Вы здесь ▸ Экспертиза ▸
Мои публикации
Здесь собраны все мои публикации. Точнее, большинство из них. Статьи в журналах и сборниках конференций, доклады, презентации, отчеты, авторские свидетельства.

Ivanov V.K., Palyukh B.V.
Application of Evidence Theory for Training Fuzzy Neural Networks in Diagnostic Systems Статья в журнале
Опубликовано в: Pattern Recognition and Image Analysis, № 33, С. 354-359, 2023, ISSN: 1054-6618.
Аннотация | Ссылки | BibTeX | Метки: belief function, diagnostic system, evidence theory, fuzzy logic, fuzzy neural network, incident, membership function, multistage production process, process chain, production rule
@article{84_60de066b-0c03-462d-a713-49e5a8888b58,
title = {Application of Evidence Theory for Training Fuzzy Neural Networks in Diagnostic Systems},
author = {Ivanov V.K. and Palyukh B.V.},
url = {https://link.springer.com/article/10.1134/S1054661823030197
https://disk.yandex.ru/i/hYt3FYBoxOo2hA},
issn = {1054-6618},
year = {2023},
date = {2023-09-29},
urldate = {2023-09-29},
journal = {Pattern Recognition and Image Analysis},
number = {33},
pages = {354-359},
abstract = {The paper substantiates a method for creating training datasets for fuzzy neural networks, which can be used to promptly obtain probabilistic estimates for the causes of abnormal critical events or incidents in diagnostic systems. The rules for converting the hypotheses on potential incident causes into intervals of defect probability in a process chain at a certain stage of continuous production are considered using belief functions. We propose a procedure for converting these hypotheses into a database of fuzzy production rules automatically, which provides training an adaptive neural network based on the Takagi-Sugeno-Kang fuzzy inference system. This makes it possible to quickly calculate a relatively accurate probabilistic estimate of a malfunction in the process chain without using expensive computing resources. Ivanov, V.K., Palyukh, B.V. Application of Evidence Theory for Training Fuzzy Neural Networks in Diagnostic Systems. Pattern Recognit. Image Anal. 33 , 354–359 (2023). https://doi.org/10.1134/S1054661823030197},
keywords = {belief function, diagnostic system, evidence theory, fuzzy logic, fuzzy neural network, incident, membership function, multistage production process, process chain, production rule},
pubstate = {published},
tppubtype = {article}
}
Иванов В.К., Палюх Б.В.
Демонстратор программной платформы для настройки гиперпараметров нечеткой нейронной сети Статья в журнале
Опубликовано в: Программные продукты и системы / Software & Systems, том 35, № 4, С. 609-617, 2022.
Аннотация | Ссылки | BibTeX | Altmetric | Метки: ANFIS, belief function, demonstrator, diagnostics, evidence theory, fuzzy logic, incident, membership function, multistage production process, neural network, process chain, production rule, TSK, демонстратор, диагностика, инцидент, многостадийный технологический процесс, нечеткая нейронная сеть, нечеткая система, продукционное правило, теория свидетельств, технологическая цепь, функция доверия, функция принадлежности
@article{nokey,
title = {Демонстратор программной платформы для настройки гиперпараметров нечеткой нейронной сети},
author = {Иванов В.К. and Палюх Б.В.},
editor = {демонстратор, диагностическая система, инцидент, многостадийный технологический процесс, нечеткая логика, нечеткая нейронная сеть, продукционное правило, теория свиде-тельств, технологическая цепь, функция доверия, функция принадлежности, ANFIS, TSK, demonstrator, belief function, diagnostics, evidence theory, fuzzy logic, incident, membership function, multistage production process, neural network, process chain, production rule},
url = {https://disk.yandex.ru/i/uWiFPzjvqsyRvg
http://swsys.ru/files/2022-4/609-617.pdf},
doi = {10.15827/0236-235X.140.609-617},
year = {2022},
date = {2022-12-31},
urldate = {2022-12-31},
journal = {Программные продукты и системы / Software & Systems},
volume = {35},
number = {4},
pages = {609-617},
publisher = {Программные продукты и системы / Software & Systems},
abstract = {В статье приводится описание исследовательского демонстратора для экспериментальной проверки и оценки вариантов применения нечетких алгоритмов и нейронных сетей в экспертной системе для диагностики сложных многостадийных технологических процессов. Цель разработки демонстратора – создание научно-технического задела для передачи готовых к внедрению решений на следующие этапы проекта.
Демонстратор позволяет оценить уровень системной готовности разрабатываемых компонентов, провести исследовательские испытания, проверить работоспособность и эффективность функционирования программных реализаций при различных значениях параметров и их сочетаниях. Диагностика состояния сложного многостадийного технологического процесса предполагает совместную обработку первичных данных для получения вероятностных характеристик аномальных критических событий или инцидентов в условиях неопределенности.
Авторами предложен вариант использования нечеткой нейронной сети, обучение которой происходит данными, сгенерированными с помощью функций доверия. Подход дает возможность значительно ускорить вычисления и минимизировать ресурсную базу. В статье основное внимание уделяется описанию функций управления моделями нейронной сети и обучающими наборами данных, обучения нейронной сети и проверки его качества, диагностики технологического процесса в различных режимах. Подробно описаны настраиваемые гиперпараметры нейронной сети. Приведены примеры реализации диагностических процедур в различных режимах. Показано, что при функционировании программной диагностической системы в условиях, близких к реальным, могут быть проверены и экспериментально обоснованы исходные предположения, касающиеся сокращения времени обнаружения и прогнозирования инцидентов, и более точно определены множества технологических цепей, являющихся причинами инцидентов.
A software platform demonstrator for configuring ANFIS neural network hyperparameters in fuzzy systems
V.K. Ivanov, B.V. Palyukh
This article describes the research demonstrator for experimental verification and evaluation of fuzzy algorithms and neural networks in an expert system for complex multi-stage technological processes. The demonstrator development purpose is to create a scientific and technical foundation for the ready-to-im-plement solutions transfer to the next project stages.
The demonstrator allows assessing the readiness level of the components being developed, conducting re-search tests, checking the operability and efficiency of the software implementations functioning proposed at various parameter values and their combinations. A complex multi-stage technological process state diagnos-tics involves the joint primary data processing to obtain probabilistic abnormal critical events or incidents characteristics under conditions of uncertainty.
The authors propose a way of using a fuzzy neural network, which is trained with data generated by belief functions. The approach makes it possible to significantly speed up calculations and to minimize the resource base. The article focuses on describing the neural network models and training datasets management, neural network training and quality control, the technological process diagnostics in various modes. The configurable hyper-parameters of the neural network are described in detail. There are examples of the diagnostic procedures implementation in various modes. It is shown that with the software diagnostic system functioning in condi-tions close to real, the initial assumptions concerning the time reduction for detecting and predicting incidents can be verified and experimentally substantiated. In addition, the technological chains sets that are the incidents causes can be more accurately determined.},
keywords = {ANFIS, belief function, demonstrator, diagnostics, evidence theory, fuzzy logic, incident, membership function, multistage production process, neural network, process chain, production rule, TSK, демонстратор, диагностика, инцидент, многостадийный технологический процесс, нечеткая нейронная сеть, нечеткая система, продукционное правило, теория свидетельств, технологическая цепь, функция доверия, функция принадлежности},
pubstate = {published},
tppubtype = {article}
}
Демонстратор позволяет оценить уровень системной готовности разрабатываемых компонентов, провести исследовательские испытания, проверить работоспособность и эффективность функционирования программных реализаций при различных значениях параметров и их сочетаниях. Диагностика состояния сложного многостадийного технологического процесса предполагает совместную обработку первичных данных для получения вероятностных характеристик аномальных критических событий или инцидентов в условиях неопределенности.
Авторами предложен вариант использования нечеткой нейронной сети, обучение которой происходит данными, сгенерированными с помощью функций доверия. Подход дает возможность значительно ускорить вычисления и минимизировать ресурсную базу. В статье основное внимание уделяется описанию функций управления моделями нейронной сети и обучающими наборами данных, обучения нейронной сети и проверки его качества, диагностики технологического процесса в различных режимах. Подробно описаны настраиваемые гиперпараметры нейронной сети. Приведены примеры реализации диагностических процедур в различных режимах. Показано, что при функционировании программной диагностической системы в условиях, близких к реальным, могут быть проверены и экспериментально обоснованы исходные предположения, касающиеся сокращения времени обнаружения и прогнозирования инцидентов, и более точно определены множества технологических цепей, являющихся причинами инцидентов.
A software platform demonstrator for configuring ANFIS neural network hyperparameters in fuzzy systems
V.K. Ivanov, B.V. Palyukh
This article describes the research demonstrator for experimental verification and evaluation of fuzzy algorithms and neural networks in an expert system for complex multi-stage technological processes. The demonstrator development purpose is to create a scientific and technical foundation for the ready-to-im-plement solutions transfer to the next project stages.
The demonstrator allows assessing the readiness level of the components being developed, conducting re-search tests, checking the operability and efficiency of the software implementations functioning proposed at various parameter values and their combinations. A complex multi-stage technological process state diagnos-tics involves the joint primary data processing to obtain probabilistic abnormal critical events or incidents characteristics under conditions of uncertainty.
The authors propose a way of using a fuzzy neural network, which is trained with data generated by belief functions. The approach makes it possible to significantly speed up calculations and to minimize the resource base. The article focuses on describing the neural network models and training datasets management, neural network training and quality control, the technological process diagnostics in various modes. The configurable hyper-parameters of the neural network are described in detail. There are examples of the diagnostic procedures implementation in various modes. It is shown that with the software diagnostic system functioning in condi-tions close to real, the initial assumptions concerning the time reduction for detecting and predicting incidents can be verified and experimentally substantiated. In addition, the technological chains sets that are the incidents causes can be more accurately determined.
Ivanov V.K., Palyukh B.V.
Joint Use of Neural Networks and Evidence Theory Methods in Control and Diagnostic Fuzzy Systems Статья в журнале
Опубликовано в: Scientific and Technical Information Processing, том 49, № 6, С. 446–454, 2022, ISSN: ISSN 0147-6882.
Аннотация | Ссылки | BibTeX | Altmetric | Метки: belief function, Dempster-Schafer evidence theory, diagnostics, fuzzy system, hybrid expert system, manufacturing process, network training, neural network, status-4, гибридная экспертная система, диагностика, нейронная сеть, нечеткая система, обучение сети, теория свидетельств Демпстера-Шафера, технологический процесс, функция доверия
@article{nokey,
title = {Joint Use of Neural Networks and Evidence Theory Methods in Control and Diagnostic Fuzzy Systems},
author = {Ivanov V.K. and Palyukh B.V.},
url = {https://disk.yandex.ru/i/Tyzzu4Iwd6XbBw},
doi = {10.3103/S0147688222060065},
issn = {ISSN 0147-6882},
year = {2022},
date = {2022-12-16},
urldate = {2022-12-16},
journal = {Scientific and Technical Information Processing},
volume = {49},
number = {6},
pages = {446–454},
publisher = {Allerton Press, Inc.},
abstract = {The article describes the study results of various intelligent data processing methods, such as neural networks and algorithms of the theory of evidence, joint use. The study was conducted on the development of diagnostic systems examples. These methods hybridization is one of the general approaches to reduce uncertainty in the data used and increase the degree of confidence in them. The data uncertainty is of an objective nature when they are obtained from the sensors of technological equipment, from technical regulations, as well as from expert specialists. The study includes an analysis of modern developments descriptions presented at significant international conferences and published recently. Several dozen descriptions of the systems composition, structure and main algorithms functioning developed for projects in various fields were reviewed. As a result, the joint application modes of neural networks and theory of evidence algorithms including the features of architectures and their implementation are determined. We also summarized information about the effectiveness of these methods’ joint application in terms of the uncertainty level reducing and confidence level increasing in the decision-making data. The scope of this study results application is the architectural solutions design of a hybrid expert system for diagnosing the technology processes state and detecting anomalies in them.},
keywords = {belief function, Dempster-Schafer evidence theory, diagnostics, fuzzy system, hybrid expert system, manufacturing process, network training, neural network, status-4, гибридная экспертная система, диагностика, нейронная сеть, нечеткая система, обучение сети, теория свидетельств Демпстера-Шафера, технологический процесс, функция доверия},
pubstate = {published},
tppubtype = {article}
}
Ivanov V.K., Palyukh B.V., Sotnikov A.N.
Generation of Production Rules with Belief Functions to Train Fuzzy Neural Network in Diagnostic System Статья в журнале
Опубликовано в: Lobachevskii Journal of Mathematics, том 43, № 10, С. 2853–2862, 2022, ISSN: 1995-0802.
Аннотация | Ссылки | BibTeX | Altmetric | Метки: belief function, diagnostic system, diagnostic variable, evidence theory, fuzzy system, incident, membership function, multistage production process, neural network, process chain, production rule, status-4
@article{nokey,
title = {Generation of Production Rules with Belief Functions to Train Fuzzy Neural Network in Diagnostic System},
author = {Ivanov V.K. and Palyukh B.V. and Sotnikov A.N. },
url = {https://disk.yandex.ru/i/c59jQ0WhniInpw},
doi = {10.1134/S1995080222130169},
issn = {1995-0802},
year = {2022},
date = {2022-10-31},
urldate = {2022-10-31},
journal = {Lobachevskii Journal of Mathematics},
volume = {43},
number = {10},
pages = {2853–2862},
abstract = {The article examines some algorithms for joint processing of raw data on the state of a complex multistage continuous production process to obtain probabilistic characteristics of abnormal critical events that can potentially lead to single failures or even emergencies. The article, thus, proposes and substantiates an approach to developing a technology to detect and predict malfunctions and determine their causes. The sequence of operations to process and convert diagnostic process data is considered essential. As a result, the article presents a general diagnostic model of a multistage production process. The model can formalize the main objects and processes in terms of the problem being solved. An incident is defined as an abnormal critical event described by non-normative values of diagnostic variables. Incidents are shown to be indicated by the corresponding membership functions. The hypotheses on potential incident causes are discussed to be built with belief functions being the basis of evidence theory or Dempster−Shafer theory. The hypotheses are characterized by an interval of malfunction probability in some process chain. The authors propose a procedure of converting these hypotheses into fuzzy production rules automatically. The automatical procedure is a prerequisite to using fuzzy neural networks to obtain a reliable estimate of the degree of belief in the incident cause. As a summary, the generated database of the production rules to train a neural network is substantiated to be used with the TSK architecture that makes possible to estimate a malfunction probability in the process chain quickly without resource-intensive computations.},
keywords = {belief function, diagnostic system, diagnostic variable, evidence theory, fuzzy system, incident, membership function, multistage production process, neural network, process chain, production rule, status-4},
pubstate = {published},
tppubtype = {article}
}
Иванов В.К., Палюх Б.В.
Демонстратор программной платформы для совместного использования алгоритмов теории свидетельств и нейронных сетей в нечетких системах Статья в журнале
Опубликовано в: Программные продукты и системы (Software & Systems), том 34, № 4, С. 511-523, 2021.
Аннотация | Ссылки | BibTeX | Altmetric | Метки: demonstrator, diagnostics, evidence theory, fuzzy system, incident, malfunction, neural network, status-4, technological chain, technology, демонстратор, диагностика, инцидент, неисправность, нейронная сеть, нечеткая система, теория свидетельств, технологическая цепь, технологический процесс
@article{nokey,
title = {Демонстратор программной платформы для совместного использования алгоритмов теории свидетельств и нейронных сетей в нечетких системах},
author = {Иванов В.К. and Палюх Б.В.},
url = {https://disk.yandex.ru/i/tEP6WYvT7sp7Tg
http://www.swsys.ru/files/2021-4/511-523.pdf},
doi = {10.15827/0236-235X.136.511-523},
year = {2021},
date = {2021-12-31},
urldate = {2021-12-31},
booktitle = {демонстратор, диагностика, инцидент, неисправность, нейронная сеть, нечеткая система, теория свидетельств, технологическая цепь, технологический процесс, demonstrator, diagnostics, evidence theory, fuzzy system, incident, malfunction, neural network, technological chain, technology},
journal = {Программные продукты и системы (Software & Systems)},
volume = {34},
number = {4},
pages = {511-523},
publisher = {ЦПС},
abstract = {Диагностика состояния сложного многостадийного технологического процесса предполагает совместную обработку первичных данных для получения вероятностных характеристик аномальных критических событий или инцидентов в условиях неопределенности. В статье представлен исследовательский демонстратор «Статус-4» – прототип программной платформы для совместного использования методов алгоритмов теории свидетельств и нейронных сетей в нечетких диагностических системах. Цель разработки демонстратора – создание научно-технического задела для передачи готовых к внедрению решений на следующие этапы проекта. Демонстратор дает возможность показать основные функциональные компоненты платформы, оценить уровень их системной готовности, провести исследовательские испытания платформы, выполнить в различных режимах тестирование программных реализаций выбранных и теоретически подтвержденных методов, быстро проверить работоспособность и эффективность функционирования при различных значениях параметров и их сочетаниях. С помощью демонстратора могут быть показаны варианты совместного применения методов нейронных сетей и теории свидетельств в гибридной экспертной системе для диагностики технологического процесса, получены экспериментальные подтверждения эффективности совместного применения этих методов в части уменьшения уровня неопределенности и увеличения уровня доверия к данным при принятии решений. В статье приводятся краткие сведения о функциональных возможностях демонстратора, включая описание технологического процесса и предположений о влиянии диагностических переменных на его работоспособность, загрузку описаний инцидентов в технологическую БД, формирование гипотез о причинах инцидентов, генерацию продукционных правил, адаптацию параметров алгоритмов оценки состояния технологического процесса с помощью нейронной сети и нечеткого вывода. Рассматриваются основные параметры хранилища данных и объектной модели, приводятся сведения о программной реализации и пользовательском интерфейсе, которые иллюстрируются примерами. Выделены особенности используемых технологий, позволяющие надеяться на эффективность их совместного использования в диагностических системах. Использование демонстратора способствует минимизации ключевых рисков создания полнофункциональной программной платформы для диагностики и оценки состояния сложного многостадийного технологического процесса.
A software platform demonstrator for joint use of evidence theory algorithms and neural networks in fuzzy systems
The diagnostics of a complex multi-stage technical process involves the joint primary data processing to obtain probabilistic characteristics of abnormal critical events or incidents under uncertainty. The paper presents the research demonstrator Status-4 that is a software platform prototype for joint using the evidence theory and neural network methods in fuzzy diagnostic systems. The purpose of the demonstrator development is to create a scientific and technical reserve for readyto-implement solutions transfer to the next project stages. The demonstrator makes it possible to show the main platform functional components, assess their system readiness level, conduct the platform research tests, perform software implementations testing of the selected and theoretically confirmed methods in various modes, check the functioning operability and efficiency at various parameter values and their combinations quickly. The demonstrator shows the options for the joint application of neural network and evidence theory methods in a hybrid expert system for diagnostics process. In addition, these methods joint application effectiveness is experimentally confirmed in terms of reducing the uncertainty level and increasing the confidence in data level when making decisions. The demonstrator enables minimizing the key risks of creating a full-featured software platform for diagnosing and evaluating the complex multi-stage technologies state. The paper provides brief information about the demonstrator functionality, including the technology description and the suppositions description about diagnostic variables influence on processing performance, loading incident descriptions into the technological database, forming hypotheses about the incidents causes, generating production rules, adapting the parameters of the technology state assessing algorithms using neural network and fuzzy inference. The paper considers the main data warehouse and object model parameters, provides the software implementation and user interface information and illustrates it by examples. It also highlights the used methods features, which allow us to hope for the effectiveness of their joint use in diagnostic systems.},
keywords = {demonstrator, diagnostics, evidence theory, fuzzy system, incident, malfunction, neural network, status-4, technological chain, technology, демонстратор, диагностика, инцидент, неисправность, нейронная сеть, нечеткая система, теория свидетельств, технологическая цепь, технологический процесс},
pubstate = {published},
tppubtype = {article}
}
A software platform demonstrator for joint use of evidence theory algorithms and neural networks in fuzzy systems
The diagnostics of a complex multi-stage technical process involves the joint primary data processing to obtain probabilistic characteristics of abnormal critical events or incidents under uncertainty. The paper presents the research demonstrator Status-4 that is a software platform prototype for joint using the evidence theory and neural network methods in fuzzy diagnostic systems. The purpose of the demonstrator development is to create a scientific and technical reserve for readyto-implement solutions transfer to the next project stages. The demonstrator makes it possible to show the main platform functional components, assess their system readiness level, conduct the platform research tests, perform software implementations testing of the selected and theoretically confirmed methods in various modes, check the functioning operability and efficiency at various parameter values and their combinations quickly. The demonstrator shows the options for the joint application of neural network and evidence theory methods in a hybrid expert system for diagnostics process. In addition, these methods joint application effectiveness is experimentally confirmed in terms of reducing the uncertainty level and increasing the confidence in data level when making decisions. The demonstrator enables minimizing the key risks of creating a full-featured software platform for diagnosing and evaluating the complex multi-stage technologies state. The paper provides brief information about the demonstrator functionality, including the technology description and the suppositions description about diagnostic variables influence on processing performance, loading incident descriptions into the technological database, forming hypotheses about the incidents causes, generating production rules, adapting the parameters of the technology state assessing algorithms using neural network and fuzzy inference. The paper considers the main data warehouse and object model parameters, provides the software implementation and user interface information and illustrates it by examples. It also highlights the used methods features, which allow us to hope for the effectiveness of their joint use in diagnostic systems.
Ivanov V.K., Palyukh B.V., Sotnikov A.N.
Additive Criterion to Evaluate Object Innovation Статья в журнале
Опубликовано в: Lobachevskii Journal of Mathematics, том 42, № 11, С. 2537-2544, 2021.
Аннотация | Ссылки | BibTeX | Altmetric | Метки: additive criterion, additive independence, demand, implementability, innovation, innovation index, novelty, partial criterion, utility function
@article{nokey,
title = {Additive Criterion to Evaluate Object Innovation},
author = {Ivanov V.K. and Palyukh B.V. and Sotnikov A.N.},
url = {https://disk.yandex.ru/i/IYx85tDFDWH6ZA
https://link.springer.com/10.1134/S1995080221110111},
doi = {10.1134/S1995080221110111},
year = {2021},
date = {2021-12-31},
urldate = {2021-12-31},
journal = {Lobachevskii Journal of Mathematics},
volume = {42},
number = {11},
pages = {2537-2544},
abstract = {The article discusses some aspects of the object descriptions having significant innovation potential. The procedure for selecting such descriptions consists of two consecutive phases. The first phase involves generating effective search queries with a special genetic algorithm. In the second phase, the model developed determines the likely innovativeness of the object. Meanwhile the values of additive selection criteria are calculated. In the latter case, the criterion is the index of innovativeness. The purpose of the article is to justify the additive criterion applicability for calculating the value of the object innovativeness. The article describes general conditions of applying additive evaluation criteria and shows how these conditions are met in the case in question. The analysis of the partial criteria gives grounds to assert their additive independence and, therefore, the correct use of additive n-dimensional utility function. Some additional reasons for applying additive criterion are also given. In general, the article proposes a unified approach to generating global assessment criteria and the relevance of their unified formal structure is shown. Note that earlier the authors proposed a similar approach to the fitness function formation of the genetic algorithm used. Despite the different physical meaning and purpose of the criteria, their relevance to common formal structure is proved.
Ivanov, V.K., Palyukh, B.V. & Sotnikov, A.N. Additive Criterion to Evaluate Object Innovation. Lobachevskii J Math 42, 2537–2544 (2021). https://doi.org/10.1134/S1995080221110111 (WoS, Scopus)},
keywords = {additive criterion, additive independence, demand, implementability, innovation, innovation index, novelty, partial criterion, utility function},
pubstate = {published},
tppubtype = {article}
}
Ivanov, V.K., Palyukh, B.V. & Sotnikov, A.N. Additive Criterion to Evaluate Object Innovation. Lobachevskii J Math 42, 2537–2544 (2021). https://doi.org/10.1134/S1995080221110111 (WoS, Scopus)
Иванов В.К., Палюх Б.В.
Совместное использование моделей и методов нейронных сетей и теории свидетельств в нечетких системах управления и диагностики Статья в журнале
Опубликовано в: Искусственный интеллект и принятие решений, № 4, С. 75-88, 2021.
Аннотация | Ссылки | BibTeX | Altmetric | Метки: belief function, Dempster-Schafer theory, diagnostics, evidence theory, fuzzy system, hybrid expert system, manufacturing process, network training, neural network, status-4, technology, гибридная экспертная система, диагностика, нейронная сеть, нечеткая система, обучение сети, теория свидетельств, технологический процесс, функция доверия
@article{nokey,
title = {Совместное использование моделей и методов нейронных сетей и теории свидетельств в нечетких системах управления и диагностики},
author = {Иванов В.К. and Палюх Б.В.},
url = {https://disk.yandex.ru/i/-HuBQb-k7qH58g
https://elib.tstu.tver.ru/MegaPro/Download/MObject/34329/001-000143914-000000000-0000-0000-01.pdf},
doi = {10.14357/20718594210407},
year = {2021},
date = {2021-12-31},
urldate = {2021-12-31},
journal = {Искусственный интеллект и принятие решений},
number = {4},
pages = {75-88},
abstract = {В статье описываются результаты исследования совместного использования методов интеллектуальной обработки данных, таких как нейронные сети и алгоритмы теории свидетельств. Исследование включает анализ описаний современных разработок, опубликованных за последнее время. Рассмотрены описания состава, структуры и функционирования основных алгоритмов систем, разработанных для проектов в различных областях. Определены варианты совместного применения нейронных сетей и алгоритмов теории свидетельств, включая особенности их архитектур и реализации. Получено подтверждение эффективности совместного применения указанных методов в части уменьшения уровня неопределенности и увеличения уровня доверия к данным, используемым для принятия решений. Областью применения результатов настоящего исследования является проектирование архитектурных решений гибридной экспертной системы для диагностики состояния технологических процессов и обнаружения аномалий в них.
The article describes the study results of various intelligent data processing methods, such as neural networks and algorithms of the theory of evidence, joint use. The study was conducted on the development of diagnostic systems examples. These methods hybridization is one of the general approaches to reduce uncertainty in the data used and increase the degree of confidence in them. The data uncertainty is of an objective nature when they are obtained from the sensors of technological equipment, from technical regulations, as well as from expert specialists. The study includes an analysis of modern developments descriptions presented at significant international conferences and published recently. Several dozen descriptions of the systems composition, structure and main algorithms functioning developed for projects in various fields were reviewed. As a result, the joint application modes of neural networks and theory of evidence algorithms including the features of architectures and their implementation are determined. We also summarized information about the effectiveness of these methods’ joint application in terms of the uncertainty level reducing and confidence level increasing in the decision-making data. The scope of this study results application is the architectural solutions design of a hybrid expert system for diagnosing the technology processes state and detecting anomalies in them.},
keywords = {belief function, Dempster-Schafer theory, diagnostics, evidence theory, fuzzy system, hybrid expert system, manufacturing process, network training, neural network, status-4, technology, гибридная экспертная система, диагностика, нейронная сеть, нечеткая система, обучение сети, теория свидетельств, технологический процесс, функция доверия},
pubstate = {published},
tppubtype = {article}
}
The article describes the study results of various intelligent data processing methods, such as neural networks and algorithms of the theory of evidence, joint use. The study was conducted on the development of diagnostic systems examples. These methods hybridization is one of the general approaches to reduce uncertainty in the data used and increase the degree of confidence in them. The data uncertainty is of an objective nature when they are obtained from the sensors of technological equipment, from technical regulations, as well as from expert specialists. The study includes an analysis of modern developments descriptions presented at significant international conferences and published recently. Several dozen descriptions of the systems composition, structure and main algorithms functioning developed for projects in various fields were reviewed. As a result, the joint application modes of neural networks and theory of evidence algorithms including the features of architectures and their implementation are determined. We also summarized information about the effectiveness of these methods’ joint application in terms of the uncertainty level reducing and confidence level increasing in the decision-making data. The scope of this study results application is the architectural solutions design of a hybrid expert system for diagnosing the technology processes state and detecting anomalies in them.
Ivanov V.K., Palyukh B.V., Sotnikov A.N.
Additive Criteria to Evaluate Relevance of Innovative Objects in Data Warehouse Статья в журнале
Опубликовано в: Lobachevskii Journal of Mathematics, том 41, № 12, С. 2535–2541, 2020, ISSN: 1995-0802.
Аннотация | Ссылки | BibTeX | Altmetric | Метки: additive criterion, additive independence, data warehouse, genetic algorithm, innovation, innovation index, partial criterion, search query, utility function
@article{V.K.Ivanov12,
title = {Additive Criteria to Evaluate Relevance of Innovative Objects in Data Warehouse},
author = {Ivanov V.K. and Palyukh B.V. and Sotnikov A.N.},
url = {https://disk.yandex.ru/i/atOSEIgY7P6F_Q},
doi = {10.1134/S199508022012015X },
issn = {1995-0802},
year = {2020},
date = {2020-11-30},
urldate = {2020-11-30},
journal = {Lobachevskii Journal of Mathematics},
volume = {41},
number = {12},
pages = {2535–2541},
abstract = {The article discusses some aspects of warehousing object descriptions having significant innovation potential. The procedure for selecting such descriptions consists of two consecutive phases. The first phase involves generating effective search queries with a special genetic algorithm (GAP). In the second phase, the model developed determines the index of innovativeness of an object archetype. Meanwhile the values of additive selection criteria are calculated. In the former case, the criterion is a fitness function of GAP. In the latter case, the criterion is the index of innovativeness. The purpose of the article is to justify the additive criterion applicability for calculating the value of the GAP fitness function. The article describes general conditions of applying additive evaluation criteria and shows how these conditions are met for the GAP fitness function. The analysis of the partial criteria gives grounds to assert their additive independence and, therefore, the correct use of additive n-dimensional utility function. Some additional reasons for applying additive criterion are also given. In general, the article proposes a unified approach to generating global assessment criteria and the relevance of unified formal structure is shown. The models presented in the article are used to develop adequate computational algorithms for the developed data warehouse support system. },
keywords = {additive criterion, additive independence, data warehouse, genetic algorithm, innovation, innovation index, partial criterion, search query, utility function},
pubstate = {published},
tppubtype = {article}
}
Иванов В.К.
Экспериментальная проверка модели оценки инновационности объекта Статья в журнале
Опубликовано в: Вестник Тверского государственного технического университета. Серия «Технические науки», том 8, № 4, С. 54-63, 2020.
Аннотация | Ссылки | BibTeX | Метки: additive criterion, data warehouse, innovation, innovation index, search query, utility function, аддитивный критерий, инновационность, поисковый запрос, функция полезности, хранилище данных
@article{V.K.Ivanov11,
title = {Экспериментальная проверка модели оценки инновационности объекта},
author = {Иванов В.К.},
url = {https://disk.yandex.ru/i/dLU-ISv_EMMz8w},
year = {2020},
date = {2020-11-30},
urldate = {2020-11-30},
journal = {Вестник Тверского государственного технического университета. Серия «Технические науки»},
volume = {8},
number = {4},
pages = {54-63},
publisher = {ТвГТУ},
abstract = {В статье рассматривается подход к количественной оценке инновационности продуктов и технологий. Результаты такой оценки могут быть использованы при создании хранилища данных для описаний объектов со значительным инновационным потенциалом. Модель расчета индекса инноваций основана на понятиях новизны, актуальности и имплементируемости объекта. Даны формальные определения этих показателей и описана методика их расчета. Используются нечеткие методы для обработки (неполной) информации из многочисленных источников и для получения вероятностных оценок инноваций. Представлены экспериментальные данные проверки модели, в том числе расчеты локальных критериев и глобального аддитивного оценочного критерия. Установлены цикличность динамических изменений показателей, их взаимозависимость, некоторые общие особенности продвижения продуктов. Полученные экспериментальные данные согласуются с экспертными оценками исследуемых продуктов. Анализ локальных критериев, использованных в исследовании, дает основание утверждать о правильном использовании аддитивной n-мерной функции полезности. Адекватность предположений и формальных выражений, которые используются в вычислительных алгоритмах отбора информации для размещения в хранилище данных, подтверждается.
Experimental check of model of object innovation evaluation
The article discusses the approach for evaluating the innovation index of the products and technologies. The evaluation results can be used to create a warehouse of the object descriptions with significant innovation potential. The model of innovation index computation is based on the concepts of novelty, relevance, and implementability of the object. Formal definitions of these indicators are given and a methodology for their calculation are described. The fuzzy methods to coprocess (incomplete) data from numerous sources and to obtain probabilistic innovation assessments are used. The experimental data of the model check including the calculations of local criteria and global additive evaluation criterion are presented. The cyclical nature of dynamic changes in indicators, their interdependence was established, some general features of the products promotion were found. The obtained experimental data are consistent with expert estimates of the products under study. The analysis of the local criteria used in the research gives grounds to assert the correct use of the additive ndimensional utility function. The adequacy of assumptions and formal expressions that are used in computational algorithms for selection information for data warehouse is confirmed. },
keywords = {additive criterion, data warehouse, innovation, innovation index, search query, utility function, аддитивный критерий, инновационность, поисковый запрос, функция полезности, хранилище данных},
pubstate = {published},
tppubtype = {article}
}
Experimental check of model of object innovation evaluation
The article discusses the approach for evaluating the innovation index of the products and technologies. The evaluation results can be used to create a warehouse of the object descriptions with significant innovation potential. The model of innovation index computation is based on the concepts of novelty, relevance, and implementability of the object. Formal definitions of these indicators are given and a methodology for their calculation are described. The fuzzy methods to coprocess (incomplete) data from numerous sources and to obtain probabilistic innovation assessments are used. The experimental data of the model check including the calculations of local criteria and global additive evaluation criterion are presented. The cyclical nature of dynamic changes in indicators, their interdependence was established, some general features of the products promotion were found. The obtained experimental data are consistent with expert estimates of the products under study. The analysis of the local criteria used in the research gives grounds to assert the correct use of the additive ndimensional utility function. The adequacy of assumptions and formal expressions that are used in computational algorithms for selection information for data warehouse is confirmed.
Иванов В.К.
Некоторые результаты экспериментальной проверки модели количественной оценки инновационности объекта Статья в журнале
Опубликовано в: Информация и инновации, том 15, № 3, С. 27–36, 2020.
Аннотация | Ссылки | BibTeX | Altmetric | Метки: additive criterion, data warehouse, innovation, innovation index, search query, utility function, аддитивный критерий, инновационность, поисковый запрос, функция полезности, хранилище данных
@article{V.K.Ivanov14,
title = {Некоторые результаты экспериментальной проверки модели количественной оценки инновационности объекта},
author = {Иванов В.К. },
url = {https://disk.yandex.ru/i/49fIoBECHvb0DA},
doi = {10.31432/1994-2443-2020-15-3-27-36},
year = {2020},
date = {2020-00-01},
urldate = {2020-00-01},
journal = {Информация и инновации},
volume = {15},
number = {3},
pages = {27–36},
abstract = {В статье представлены результаты экспериментов, которые были проведены для подтверждения основных идей предлагаемого подхода к определению инновационности объектов. Этот подход основан на предположении об адекватности отображения жизненного цикла продуктов, описания которых размещены в различных хранилищах данных. Предложенная формальная модель позволяет вычислить количественное значение аддитивного оценочного критерия инновационности объектов. Полученные данные экспериментов дают возможность оценить корректность принятого подхода.
Some Results of Experimental Check of The Model of the Object Innovativeness Quantitative Evaluation
The paper presents the results of the experiments that were conducted to confirm the main ideas of the proposed approach to determining the objects innovativeness. This approach assumed that the product life cycle of whose descriptions are placed in different data warehouses is adequate. The proposed formal model allows us to calculate the quantitative value of the additive evaluation criterion of objects innovativeness. The obtained experimental data make it possible to evaluate the adopted approach correctness.},
keywords = {additive criterion, data warehouse, innovation, innovation index, search query, utility function, аддитивный критерий, инновационность, поисковый запрос, функция полезности, хранилище данных},
pubstate = {published},
tppubtype = {article}
}
Some Results of Experimental Check of The Model of the Object Innovativeness Quantitative Evaluation
The paper presents the results of the experiments that were conducted to confirm the main ideas of the proposed approach to determining the objects innovativeness. This approach assumed that the product life cycle of whose descriptions are placed in different data warehouses is adequate. The proposed formal model allows us to calculate the quantitative value of the additive evaluation criterion of objects innovativeness. The obtained experimental data make it possible to evaluate the adopted approach correctness.
Я подготовил и опубликовал довольно много печатных материалов. И, готовя к публикации очередной материал, я каждый раз помнил основное правило — публиковать результаты работы. Не писал текст для того, чтобы написать статью или отчет. Поэтому мне трудно найти свои работу, которая вызывала бы у меня чувство неловкости.
Также отмечу, что писал и сейчас пишу довольно медленно. Для серьезных статей хорошо, если получается одна страница в день. Многократно правлю текст, пытаясь предельно точно передать свою мысль. Не всегда удаётся, но стараюсь. И, как правило, начинаю с плана, в котором фиксирую предполагаемые структуру и содержание текста. Помогает.
Результаты см. выше.