Вы здесь ▸ Экспертиза ▸
Мои публикации
Здесь собраны все мои публикации. Точнее, большинство из них. Статьи в журналах и сборниках конференций, доклады, презентации, отчеты, авторские свидетельства.

Иванов В.К.
Прогнозирование диагностических данных с использованием нечетких нейронных сетей Статья в сборнике
Опубликовано в: Современные технологии и инновации, С. 169-179, ТвГТУ, 2023, ISBN: 9785799513023.
Аннотация | Ссылки | BibTeX | Метки: diagnostic variable, forecast, fuzzy neural network, membership function, production rule, status-4, technology, time series, training dataset, временной ряд, диагностическая переменная, нечеткая нейронная сеть, обучающий набор данных, прогноз, продукционное правило, технологический процесс, функция принадлежности
@inproceedings{nokey,
title = {Прогнозирование диагностических данных с использованием нечетких нейронных сетей},
author = {Иванов В.К.},
url = {https://disk.yandex.ru/i/gsIW0s0vQKW6xg},
isbn = {9785799513023},
year = {2023},
date = {2023-07-31},
urldate = {2023-07-31},
booktitle = {Современные технологии и инновации},
pages = {169-179},
publisher = {ТвГТУ},
abstract = {В статье описан подход к решению задач анализа диагностической информации о функционировании сложного технологического процесса на примере прогнозирования трендов и временного ряда значений диагностических переменных. Цель проведённого исследования – показать возможность применения нечёткого сглаживания временного ряда и нечётких нейронных сетей для смягчения последствий неопределённости факторов, влияющих на функционирование технологического процесса, и неполноты информации о них. Предлагается модель прогнозирования, основанная на использовании нечётких временных рядов. Эта модель используется для формализации системы нечётких продукционных правил. Обосновывается применение нейронной сети с архитектурой ANFIS. Описывается методика подготовки обучающих и проверочных наборов реальных данных, настройки и обучения нейронной сети. Представлены некоторые результаты оценки качества обучения нейронной сети. Отмечается достаточная точность прогноза, достигаемая без использования затратных вычислительных ресурсов. Делается вывод о применимости предложенного подхода к данной и подобным задачам.
V.K. Ivanov. Prediction diagnostic data using fuzzy neural networks
The paper describes an approach to solving the problems of analyzing diagnostic information about the complex technological process functioning by the example of forecasting diagnostic variables values trends and their a time series. The study purpose is to show the possibility of using time series fuzzy smoothing and fuzzy neural networks to mitigate the factors uncertainty effects affecting the technological process functioning and incompleteness of information about such factors. A sales forecasting model based on the fuzzy time series use is proposed. This model is used to formalize fuzzy production rules system. The application of a neural network with ANFIS architecture is justified. The methodology of preparing training and verification real data sets, setting up and training a neural network is described. Some results of the neural network training quality evaluation are presented. There is a sufficient accuracy of the forecast, achieved without the expensive computing resources use. The conclusion is made about the proposed approach applicability to this and similar tasks.},
keywords = {diagnostic variable, forecast, fuzzy neural network, membership function, production rule, status-4, technology, time series, training dataset, временной ряд, диагностическая переменная, нечеткая нейронная сеть, обучающий набор данных, прогноз, продукционное правило, технологический процесс, функция принадлежности},
pubstate = {published},
tppubtype = {inproceedings}
}
V.K. Ivanov. Prediction diagnostic data using fuzzy neural networks
The paper describes an approach to solving the problems of analyzing diagnostic information about the complex technological process functioning by the example of forecasting diagnostic variables values trends and their a time series. The study purpose is to show the possibility of using time series fuzzy smoothing and fuzzy neural networks to mitigate the factors uncertainty effects affecting the technological process functioning and incompleteness of information about such factors. A sales forecasting model based on the fuzzy time series use is proposed. This model is used to formalize fuzzy production rules system. The application of a neural network with ANFIS architecture is justified. The methodology of preparing training and verification real data sets, setting up and training a neural network is described. Some results of the neural network training quality evaluation are presented. There is a sufficient accuracy of the forecast, achieved without the expensive computing resources use. The conclusion is made about the proposed approach applicability to this and similar tasks.
Иванов В.К., Палюх Б.В.
Совместное использование моделей и методов нейронных сетей и теории свидетельств в нечетких системах управления и диагностики Статья в журнале
Опубликовано в: Искусственный интеллект и принятие решений, № 4, С. 75-88, 2021.
Аннотация | Ссылки | BibTeX | Altmetric | Метки: belief function, Dempster-Schafer theory, diagnostics, evidence theory, fuzzy system, hybrid expert system, manufacturing process, network training, neural network, status-4, technology, гибридная экспертная система, диагностика, нейронная сеть, нечеткая система, обучение сети, теория свидетельств, технологический процесс, функция доверия
@article{nokey,
title = {Совместное использование моделей и методов нейронных сетей и теории свидетельств в нечетких системах управления и диагностики},
author = {Иванов В.К. and Палюх Б.В.},
url = {https://disk.yandex.ru/i/-HuBQb-k7qH58g
https://elib.tstu.tver.ru/MegaPro/Download/MObject/34329/001-000143914-000000000-0000-0000-01.pdf},
doi = {10.14357/20718594210407},
year = {2021},
date = {2021-12-31},
urldate = {2021-12-31},
journal = {Искусственный интеллект и принятие решений},
number = {4},
pages = {75-88},
abstract = {В статье описываются результаты исследования совместного использования методов интеллектуальной обработки данных, таких как нейронные сети и алгоритмы теории свидетельств. Исследование включает анализ описаний современных разработок, опубликованных за последнее время. Рассмотрены описания состава, структуры и функционирования основных алгоритмов систем, разработанных для проектов в различных областях. Определены варианты совместного применения нейронных сетей и алгоритмов теории свидетельств, включая особенности их архитектур и реализации. Получено подтверждение эффективности совместного применения указанных методов в части уменьшения уровня неопределенности и увеличения уровня доверия к данным, используемым для принятия решений. Областью применения результатов настоящего исследования является проектирование архитектурных решений гибридной экспертной системы для диагностики состояния технологических процессов и обнаружения аномалий в них.
The article describes the study results of various intelligent data processing methods, such as neural networks and algorithms of the theory of evidence, joint use. The study was conducted on the development of diagnostic systems examples. These methods hybridization is one of the general approaches to reduce uncertainty in the data used and increase the degree of confidence in them. The data uncertainty is of an objective nature when they are obtained from the sensors of technological equipment, from technical regulations, as well as from expert specialists. The study includes an analysis of modern developments descriptions presented at significant international conferences and published recently. Several dozen descriptions of the systems composition, structure and main algorithms functioning developed for projects in various fields were reviewed. As a result, the joint application modes of neural networks and theory of evidence algorithms including the features of architectures and their implementation are determined. We also summarized information about the effectiveness of these methods’ joint application in terms of the uncertainty level reducing and confidence level increasing in the decision-making data. The scope of this study results application is the architectural solutions design of a hybrid expert system for diagnosing the technology processes state and detecting anomalies in them.},
keywords = {belief function, Dempster-Schafer theory, diagnostics, evidence theory, fuzzy system, hybrid expert system, manufacturing process, network training, neural network, status-4, technology, гибридная экспертная система, диагностика, нейронная сеть, нечеткая система, обучение сети, теория свидетельств, технологический процесс, функция доверия},
pubstate = {published},
tppubtype = {article}
}
The article describes the study results of various intelligent data processing methods, such as neural networks and algorithms of the theory of evidence, joint use. The study was conducted on the development of diagnostic systems examples. These methods hybridization is one of the general approaches to reduce uncertainty in the data used and increase the degree of confidence in them. The data uncertainty is of an objective nature when they are obtained from the sensors of technological equipment, from technical regulations, as well as from expert specialists. The study includes an analysis of modern developments descriptions presented at significant international conferences and published recently. Several dozen descriptions of the systems composition, structure and main algorithms functioning developed for projects in various fields were reviewed. As a result, the joint application modes of neural networks and theory of evidence algorithms including the features of architectures and their implementation are determined. We also summarized information about the effectiveness of these methods’ joint application in terms of the uncertainty level reducing and confidence level increasing in the decision-making data. The scope of this study results application is the architectural solutions design of a hybrid expert system for diagnosing the technology processes state and detecting anomalies in them.
Иванов В.К., Палюх Б.В.
Демонстратор программной платформы для совместного использования алгоритмов теории свидетельств и нейронных сетей в нечетких системах Статья в журнале
Опубликовано в: Программные продукты и системы (Software & Systems), том 34, № 4, С. 511-523, 2021.
Аннотация | Ссылки | BibTeX | Altmetric | Метки: demonstrator, diagnostics, evidence theory, fuzzy system, incident, malfunction, neural network, status-4, technological chain, technology, демонстратор, диагностика, инцидент, неисправность, нейронная сеть, нечеткая система, теория свидетельств, технологическая цепь, технологический процесс
@article{nokey,
title = {Демонстратор программной платформы для совместного использования алгоритмов теории свидетельств и нейронных сетей в нечетких системах},
author = {Иванов В.К. and Палюх Б.В.},
url = {https://disk.yandex.ru/i/tEP6WYvT7sp7Tg
http://www.swsys.ru/files/2021-4/511-523.pdf},
doi = {10.15827/0236-235X.136.511-523},
year = {2021},
date = {2021-12-31},
urldate = {2021-12-31},
booktitle = {демонстратор, диагностика, инцидент, неисправность, нейронная сеть, нечеткая система, теория свидетельств, технологическая цепь, технологический процесс, demonstrator, diagnostics, evidence theory, fuzzy system, incident, malfunction, neural network, technological chain, technology},
journal = {Программные продукты и системы (Software & Systems)},
volume = {34},
number = {4},
pages = {511-523},
publisher = {ЦПС},
abstract = {Диагностика состояния сложного многостадийного технологического процесса предполагает совместную обработку первичных данных для получения вероятностных характеристик аномальных критических событий или инцидентов в условиях неопределенности. В статье представлен исследовательский демонстратор «Статус-4» – прототип программной платформы для совместного использования методов алгоритмов теории свидетельств и нейронных сетей в нечетких диагностических системах. Цель разработки демонстратора – создание научно-технического задела для передачи готовых к внедрению решений на следующие этапы проекта. Демонстратор дает возможность показать основные функциональные компоненты платформы, оценить уровень их системной готовности, провести исследовательские испытания платформы, выполнить в различных режимах тестирование программных реализаций выбранных и теоретически подтвержденных методов, быстро проверить работоспособность и эффективность функционирования при различных значениях параметров и их сочетаниях. С помощью демонстратора могут быть показаны варианты совместного применения методов нейронных сетей и теории свидетельств в гибридной экспертной системе для диагностики технологического процесса, получены экспериментальные подтверждения эффективности совместного применения этих методов в части уменьшения уровня неопределенности и увеличения уровня доверия к данным при принятии решений. В статье приводятся краткие сведения о функциональных возможностях демонстратора, включая описание технологического процесса и предположений о влиянии диагностических переменных на его работоспособность, загрузку описаний инцидентов в технологическую БД, формирование гипотез о причинах инцидентов, генерацию продукционных правил, адаптацию параметров алгоритмов оценки состояния технологического процесса с помощью нейронной сети и нечеткого вывода. Рассматриваются основные параметры хранилища данных и объектной модели, приводятся сведения о программной реализации и пользовательском интерфейсе, которые иллюстрируются примерами. Выделены особенности используемых технологий, позволяющие надеяться на эффективность их совместного использования в диагностических системах. Использование демонстратора способствует минимизации ключевых рисков создания полнофункциональной программной платформы для диагностики и оценки состояния сложного многостадийного технологического процесса.
A software platform demonstrator for joint use of evidence theory algorithms and neural networks in fuzzy systems
The diagnostics of a complex multi-stage technical process involves the joint primary data processing to obtain probabilistic characteristics of abnormal critical events or incidents under uncertainty. The paper presents the research demonstrator Status-4 that is a software platform prototype for joint using the evidence theory and neural network methods in fuzzy diagnostic systems. The purpose of the demonstrator development is to create a scientific and technical reserve for readyto-implement solutions transfer to the next project stages. The demonstrator makes it possible to show the main platform functional components, assess their system readiness level, conduct the platform research tests, perform software implementations testing of the selected and theoretically confirmed methods in various modes, check the functioning operability and efficiency at various parameter values and their combinations quickly. The demonstrator shows the options for the joint application of neural network and evidence theory methods in a hybrid expert system for diagnostics process. In addition, these methods joint application effectiveness is experimentally confirmed in terms of reducing the uncertainty level and increasing the confidence in data level when making decisions. The demonstrator enables minimizing the key risks of creating a full-featured software platform for diagnosing and evaluating the complex multi-stage technologies state. The paper provides brief information about the demonstrator functionality, including the technology description and the suppositions description about diagnostic variables influence on processing performance, loading incident descriptions into the technological database, forming hypotheses about the incidents causes, generating production rules, adapting the parameters of the technology state assessing algorithms using neural network and fuzzy inference. The paper considers the main data warehouse and object model parameters, provides the software implementation and user interface information and illustrates it by examples. It also highlights the used methods features, which allow us to hope for the effectiveness of their joint use in diagnostic systems.},
keywords = {demonstrator, diagnostics, evidence theory, fuzzy system, incident, malfunction, neural network, status-4, technological chain, technology, демонстратор, диагностика, инцидент, неисправность, нейронная сеть, нечеткая система, теория свидетельств, технологическая цепь, технологический процесс},
pubstate = {published},
tppubtype = {article}
}
A software platform demonstrator for joint use of evidence theory algorithms and neural networks in fuzzy systems
The diagnostics of a complex multi-stage technical process involves the joint primary data processing to obtain probabilistic characteristics of abnormal critical events or incidents under uncertainty. The paper presents the research demonstrator Status-4 that is a software platform prototype for joint using the evidence theory and neural network methods in fuzzy diagnostic systems. The purpose of the demonstrator development is to create a scientific and technical reserve for readyto-implement solutions transfer to the next project stages. The demonstrator makes it possible to show the main platform functional components, assess their system readiness level, conduct the platform research tests, perform software implementations testing of the selected and theoretically confirmed methods in various modes, check the functioning operability and efficiency at various parameter values and their combinations quickly. The demonstrator shows the options for the joint application of neural network and evidence theory methods in a hybrid expert system for diagnostics process. In addition, these methods joint application effectiveness is experimentally confirmed in terms of reducing the uncertainty level and increasing the confidence in data level when making decisions. The demonstrator enables minimizing the key risks of creating a full-featured software platform for diagnosing and evaluating the complex multi-stage technologies state. The paper provides brief information about the demonstrator functionality, including the technology description and the suppositions description about diagnostic variables influence on processing performance, loading incident descriptions into the technological database, forming hypotheses about the incidents causes, generating production rules, adapting the parameters of the technology state assessing algorithms using neural network and fuzzy inference. The paper considers the main data warehouse and object model parameters, provides the software implementation and user interface information and illustrates it by examples. It also highlights the used methods features, which allow us to hope for the effectiveness of their joint use in diagnostic systems.
Иванов В.К.
2021, (Свидетельство о государственной регистрации программы для ЭВМ №2021667814 «Программа-демонстратор платформы для совместного использования алгоритмов теории свидетельств и нейронных сетей в нечетких системах» : дата государственной регистрации в Реестре программ для ЭВМ 02 ноября 2021 г. / автор: В.К. Иванов).
Аннотация | Ссылки | BibTeX | Метки: bif, demonstrator, diagnostics, evidence theory, fSimilarity, fuzzy system, incident, malfunction, neural network, status-4, technology, демонстратор, диагностика, инцидент, неисправность, нейронная сеть, нечеткая система, теория свидетельств, технологический процесс
@patent{8_72811204-2d1a-4d92-8934-4a4bbfae45e0,
title = {Свидетельство о государственной регистрации программы для ЭВМ №2021667814 «Программа-демонстратор платформы для совместного использования алгоритмов теории свидетельств и нейронных сетей в нечетких системах»},
author = {Иванов В.К.},
url = {https://disk.yandex.ru/i/8IPAUwu–Xufcg
https://elib.tstu.tver.ru/MegaPro/Download/MObject/34330/001-000143950-000000000-0000-0000-01.pdf},
year = {2021},
date = {2021-11-01},
urldate = {2025-02-01},
abstract = {<p>Программа представляет собой исследовательский прототип программной платформы для совместного использования моделей и методов теории свидетельств и нейронных сетей в гибридной нечеткой экспертной системе для диагностики технологического процесса. Основные функции программы: формирование описаний технологического процесса и предположений о влиянии диагностических переменных на его работоспособность, загрузка описаний инцидентов в технологическую базу данных, формирование гипотез о причинах инцидентов, генерация продукционных правил, адаптация параметров алгоритмов оценки состояния технологического процесса с помощью нейронной сети и нечеткого вывода. Демонстратор дает возможность оценить уровень системной готовности основных функциональных компонентов, провести исследовательские испытания, выполнить в различных режимах тестирование программных реализаций выбранных и теоретически подтвержденных методов для уменьшения уровня неопределенности и увеличения уровня доверия к данным при принятии решений.</p><p>Язык: Python</p><p>Объём: 5400 Kб</p><p> </p>},
note = {Свидетельство о государственной регистрации программы для ЭВМ №2021667814 «Программа-демонстратор платформы для совместного использования алгоритмов теории свидетельств и нейронных сетей в нечетких системах» : дата государственной регистрации в Реестре программ для ЭВМ 02 ноября 2021 г. / автор: В.К. Иванов},
keywords = {bif, demonstrator, diagnostics, evidence theory, fSimilarity, fuzzy system, incident, malfunction, neural network, status-4, technology, демонстратор, диагностика, инцидент, неисправность, нейронная сеть, нечеткая система, теория свидетельств, технологический процесс},
pubstate = {published},
tppubtype = {patent}
}
Я подготовил и опубликовал довольно много печатных материалов. И, готовя к публикации очередной материал, я каждый раз помнил основное правило — публиковать результаты работы. Не писал текст для того, чтобы написать статью или отчет. Поэтому мне трудно найти свои работу, которая вызывала бы у меня чувство неловкости.
Также отмечу, что писал и сейчас пишу довольно медленно. Для серьезных статей хорошо, если получается одна страница в день. Многократно правлю текст, пытаясь предельно точно передать свою мысль. Не всегда удаётся, но стараюсь. И, как правило, начинаю с плана, в котором фиксирую предполагаемые структуру и содержание текста. Помогает.
Результаты см. выше.