Вы здесь ▸ Экспертиза ▸
Мои публикации
Здесь собраны все мои публикации. Точнее, большинство из них. Статьи в журналах и сборниках конференций, доклады, презентации, отчеты, авторские свидетельства.

Иванов В.К.
Прогнозирование диагностических данных с использованием нечетких нейронных сетей Статья в сборнике
Опубликовано в: Современные технологии и инновации, С. 169-179, ТвГТУ, 2023, ISBN: 9785799513023.
Аннотация | Ссылки | BibTeX | Метки: diagnostic variable, forecast, fuzzy neural network, membership function, production rule, status-4, technology, time series, training dataset, временной ряд, диагностическая переменная, нечеткая нейронная сеть, обучающий набор данных, прогноз, продукционное правило, технологический процесс, функция принадлежности
@inproceedings{nokey,
title = {Прогнозирование диагностических данных с использованием нечетких нейронных сетей},
author = {Иванов В.К.},
url = {https://disk.yandex.ru/i/gsIW0s0vQKW6xg},
isbn = {9785799513023},
year = {2023},
date = {2023-07-31},
urldate = {2023-07-31},
booktitle = {Современные технологии и инновации},
pages = {169-179},
publisher = {ТвГТУ},
abstract = {В статье описан подход к решению задач анализа диагностической информации о функционировании сложного технологического процесса на примере прогнозирования трендов и временного ряда значений диагностических переменных. Цель проведённого исследования – показать возможность применения нечёткого сглаживания временного ряда и нечётких нейронных сетей для смягчения последствий неопределённости факторов, влияющих на функционирование технологического процесса, и неполноты информации о них. Предлагается модель прогнозирования, основанная на использовании нечётких временных рядов. Эта модель используется для формализации системы нечётких продукционных правил. Обосновывается применение нейронной сети с архитектурой ANFIS. Описывается методика подготовки обучающих и проверочных наборов реальных данных, настройки и обучения нейронной сети. Представлены некоторые результаты оценки качества обучения нейронной сети. Отмечается достаточная точность прогноза, достигаемая без использования затратных вычислительных ресурсов. Делается вывод о применимости предложенного подхода к данной и подобным задачам.
V.K. Ivanov. Prediction diagnostic data using fuzzy neural networks
The paper describes an approach to solving the problems of analyzing diagnostic information about the complex technological process functioning by the example of forecasting diagnostic variables values trends and their a time series. The study purpose is to show the possibility of using time series fuzzy smoothing and fuzzy neural networks to mitigate the factors uncertainty effects affecting the technological process functioning and incompleteness of information about such factors. A sales forecasting model based on the fuzzy time series use is proposed. This model is used to formalize fuzzy production rules system. The application of a neural network with ANFIS architecture is justified. The methodology of preparing training and verification real data sets, setting up and training a neural network is described. Some results of the neural network training quality evaluation are presented. There is a sufficient accuracy of the forecast, achieved without the expensive computing resources use. The conclusion is made about the proposed approach applicability to this and similar tasks.},
keywords = {diagnostic variable, forecast, fuzzy neural network, membership function, production rule, status-4, technology, time series, training dataset, временной ряд, диагностическая переменная, нечеткая нейронная сеть, обучающий набор данных, прогноз, продукционное правило, технологический процесс, функция принадлежности},
pubstate = {published},
tppubtype = {inproceedings}
}
V.K. Ivanov. Prediction diagnostic data using fuzzy neural networks
The paper describes an approach to solving the problems of analyzing diagnostic information about the complex technological process functioning by the example of forecasting diagnostic variables values trends and their a time series. The study purpose is to show the possibility of using time series fuzzy smoothing and fuzzy neural networks to mitigate the factors uncertainty effects affecting the technological process functioning and incompleteness of information about such factors. A sales forecasting model based on the fuzzy time series use is proposed. This model is used to formalize fuzzy production rules system. The application of a neural network with ANFIS architecture is justified. The methodology of preparing training and verification real data sets, setting up and training a neural network is described. Some results of the neural network training quality evaluation are presented. There is a sufficient accuracy of the forecast, achieved without the expensive computing resources use. The conclusion is made about the proposed approach applicability to this and similar tasks.
Иванов В.К., Палюх Б.В.
Демонстратор программной платформы для настройки гиперпараметров нечеткой нейронной сети Статья в журнале
Опубликовано в: Программные продукты и системы / Software & Systems, том 35, № 4, С. 609-617, 2022.
Аннотация | Ссылки | BibTeX | Altmetric | Метки: ANFIS, belief function, demonstrator, diagnostics, evidence theory, fuzzy logic, incident, membership function, multistage production process, neural network, process chain, production rule, TSK, демонстратор, диагностика, инцидент, многостадийный технологический процесс, нечеткая нейронная сеть, нечеткая система, продукционное правило, теория свидетельств, технологическая цепь, функция доверия, функция принадлежности
@article{nokey,
title = {Демонстратор программной платформы для настройки гиперпараметров нечеткой нейронной сети},
author = {Иванов В.К. and Палюх Б.В.},
editor = {демонстратор, диагностическая система, инцидент, многостадийный технологический процесс, нечеткая логика, нечеткая нейронная сеть, продукционное правило, теория свиде-тельств, технологическая цепь, функция доверия, функция принадлежности, ANFIS, TSK, demonstrator, belief function, diagnostics, evidence theory, fuzzy logic, incident, membership function, multistage production process, neural network, process chain, production rule},
url = {https://disk.yandex.ru/i/uWiFPzjvqsyRvg
http://swsys.ru/files/2022-4/609-617.pdf},
doi = {10.15827/0236-235X.140.609-617},
year = {2022},
date = {2022-12-31},
urldate = {2022-12-31},
journal = {Программные продукты и системы / Software & Systems},
volume = {35},
number = {4},
pages = {609-617},
publisher = {Программные продукты и системы / Software & Systems},
abstract = {В статье приводится описание исследовательского демонстратора для экспериментальной проверки и оценки вариантов применения нечетких алгоритмов и нейронных сетей в экспертной системе для диагностики сложных многостадийных технологических процессов. Цель разработки демонстратора – создание научно-технического задела для передачи готовых к внедрению решений на следующие этапы проекта.
Демонстратор позволяет оценить уровень системной готовности разрабатываемых компонентов, провести исследовательские испытания, проверить работоспособность и эффективность функционирования программных реализаций при различных значениях параметров и их сочетаниях. Диагностика состояния сложного многостадийного технологического процесса предполагает совместную обработку первичных данных для получения вероятностных характеристик аномальных критических событий или инцидентов в условиях неопределенности.
Авторами предложен вариант использования нечеткой нейронной сети, обучение которой происходит данными, сгенерированными с помощью функций доверия. Подход дает возможность значительно ускорить вычисления и минимизировать ресурсную базу. В статье основное внимание уделяется описанию функций управления моделями нейронной сети и обучающими наборами данных, обучения нейронной сети и проверки его качества, диагностики технологического процесса в различных режимах. Подробно описаны настраиваемые гиперпараметры нейронной сети. Приведены примеры реализации диагностических процедур в различных режимах. Показано, что при функционировании программной диагностической системы в условиях, близких к реальным, могут быть проверены и экспериментально обоснованы исходные предположения, касающиеся сокращения времени обнаружения и прогнозирования инцидентов, и более точно определены множества технологических цепей, являющихся причинами инцидентов.
A software platform demonstrator for configuring ANFIS neural network hyperparameters in fuzzy systems
V.K. Ivanov, B.V. Palyukh
This article describes the research demonstrator for experimental verification and evaluation of fuzzy algorithms and neural networks in an expert system for complex multi-stage technological processes. The demonstrator development purpose is to create a scientific and technical foundation for the ready-to-im-plement solutions transfer to the next project stages.
The demonstrator allows assessing the readiness level of the components being developed, conducting re-search tests, checking the operability and efficiency of the software implementations functioning proposed at various parameter values and their combinations. A complex multi-stage technological process state diagnos-tics involves the joint primary data processing to obtain probabilistic abnormal critical events or incidents characteristics under conditions of uncertainty.
The authors propose a way of using a fuzzy neural network, which is trained with data generated by belief functions. The approach makes it possible to significantly speed up calculations and to minimize the resource base. The article focuses on describing the neural network models and training datasets management, neural network training and quality control, the technological process diagnostics in various modes. The configurable hyper-parameters of the neural network are described in detail. There are examples of the diagnostic procedures implementation in various modes. It is shown that with the software diagnostic system functioning in condi-tions close to real, the initial assumptions concerning the time reduction for detecting and predicting incidents can be verified and experimentally substantiated. In addition, the technological chains sets that are the incidents causes can be more accurately determined.},
keywords = {ANFIS, belief function, demonstrator, diagnostics, evidence theory, fuzzy logic, incident, membership function, multistage production process, neural network, process chain, production rule, TSK, демонстратор, диагностика, инцидент, многостадийный технологический процесс, нечеткая нейронная сеть, нечеткая система, продукционное правило, теория свидетельств, технологическая цепь, функция доверия, функция принадлежности},
pubstate = {published},
tppubtype = {article}
}
Демонстратор позволяет оценить уровень системной готовности разрабатываемых компонентов, провести исследовательские испытания, проверить работоспособность и эффективность функционирования программных реализаций при различных значениях параметров и их сочетаниях. Диагностика состояния сложного многостадийного технологического процесса предполагает совместную обработку первичных данных для получения вероятностных характеристик аномальных критических событий или инцидентов в условиях неопределенности.
Авторами предложен вариант использования нечеткой нейронной сети, обучение которой происходит данными, сгенерированными с помощью функций доверия. Подход дает возможность значительно ускорить вычисления и минимизировать ресурсную базу. В статье основное внимание уделяется описанию функций управления моделями нейронной сети и обучающими наборами данных, обучения нейронной сети и проверки его качества, диагностики технологического процесса в различных режимах. Подробно описаны настраиваемые гиперпараметры нейронной сети. Приведены примеры реализации диагностических процедур в различных режимах. Показано, что при функционировании программной диагностической системы в условиях, близких к реальным, могут быть проверены и экспериментально обоснованы исходные предположения, касающиеся сокращения времени обнаружения и прогнозирования инцидентов, и более точно определены множества технологических цепей, являющихся причинами инцидентов.
A software platform demonstrator for configuring ANFIS neural network hyperparameters in fuzzy systems
V.K. Ivanov, B.V. Palyukh
This article describes the research demonstrator for experimental verification and evaluation of fuzzy algorithms and neural networks in an expert system for complex multi-stage technological processes. The demonstrator development purpose is to create a scientific and technical foundation for the ready-to-im-plement solutions transfer to the next project stages.
The demonstrator allows assessing the readiness level of the components being developed, conducting re-search tests, checking the operability and efficiency of the software implementations functioning proposed at various parameter values and their combinations. A complex multi-stage technological process state diagnos-tics involves the joint primary data processing to obtain probabilistic abnormal critical events or incidents characteristics under conditions of uncertainty.
The authors propose a way of using a fuzzy neural network, which is trained with data generated by belief functions. The approach makes it possible to significantly speed up calculations and to minimize the resource base. The article focuses on describing the neural network models and training datasets management, neural network training and quality control, the technological process diagnostics in various modes. The configurable hyper-parameters of the neural network are described in detail. There are examples of the diagnostic procedures implementation in various modes. It is shown that with the software diagnostic system functioning in condi-tions close to real, the initial assumptions concerning the time reduction for detecting and predicting incidents can be verified and experimentally substantiated. In addition, the technological chains sets that are the incidents causes can be more accurately determined.
Иванов В.К., Палюх Б.В.
Применение теории свидетельств для обучения нейронной сети ANFIS/TSK в диагностических системах Статья в сборнике
Опубликовано в: Двадцатая Национальная конференция по искусственному интеллекту с международным участи, КИИ-2022 (Москва, 21–23 декабря 2022 г.). Труды конференции. Т. 2. – М.: Издательство МЭИ, 2022. – 464 с., С. 27-38, Москва, МЭИ, 2022, ISBN: 978-5-7046-2737-1 (Т. 2).
Аннотация | Ссылки | BibTeX | Метки: ANFIS, belief function, diagnostics, evidence theory, fuzzy system, incident, membership function, neural network, production rule, status-4, technological chain, TSK, диагностика, инцидент, многостадийный технологический процесс, нечёткая логика, нечеткая нейронная сеть, продукционное правило, теория свидетельств, технологическая цепь, функция доверия, функция принадлежности
@inproceedings{nokey,
title = {Применение теории свидетельств для обучения нейронной сети ANFIS/TSK в диагностических системах},
author = {Иванов В.К. and Палюх Б.В.},
url = {https://disk.yandex.ru/i/aQVzbPsLkPGU2A
https://disk.yandex.ru/d/cVfdqjddPQbo-Q
https://disk.yandex.ru/i/WDIvuPjjS1iNfA},
isbn = {978-5-7046-2737-1 (Т. 2)},
year = {2022},
date = {2022-12-23},
urldate = {2022-12-23},
booktitle = {Двадцатая Национальная конференция по искусственному интеллекту с международным участи, КИИ-2022 (Москва, 21–23 декабря 2022 г.). Труды конференции. Т. 2. – М.: Издательство МЭИ, 2022. – 464 с.},
volume = {2},
pages = {27-38},
publisher = {Москва, МЭИ},
abstract = {В работе обосновывается метод создания обучающих наборов данных для нечеткой нейронной сети, которая может быть использована для оперативного получения вероятностных оценок причин аномальных критических событий или инцидентов в диагностических системах. Рассматриваются правила преобразования гипотез о потенциальных причинах инцидентов в интервалы вероятности дефекта технологической цепи на некоторой стадии непрерывного производства с использованием функций доверия. Предлагается процедура автоматического преобразования этих гипотез в базу нечетких продукционных правил, которая обеспечивает обучение нейронной сети ANFIS с архитектурой TSK. Это позволит оперативно определять достаточно верную для практического использования оценку вероятности неисправности в технологической цепи без использования затратных вычислительных ресурсов. Это позволит оперативно вычислить относительно точную оценку вероятности неисправности в технологической цепи без использования затратных вычислительных ресурсов.
Evidence Theory Application for ANFIS/TSK Neural Network Training in Diagnostic Systems
The paper substantiates a method for creating training data sets for a fuzzy neural network, which can be used to quickly obtain probabilistic estimates of incidents causes in diagnostic systems. The rules for converting hypotheses about potential causes of incidents into intervals of defect probability in the technological chain at some continuous production stage using belief functions are considered. A procedure is proposed for automatically converting these hypotheses into a fuzzy production rules base, which provides training for the ANFIS neural network with the TSK architecture. This will allow you to quickly determine an estimate of the malfunction probability in the process chain that is sufficiently correct for practical use without using expensive computing resources.},
keywords = {ANFIS, belief function, diagnostics, evidence theory, fuzzy system, incident, membership function, neural network, production rule, status-4, technological chain, TSK, диагностика, инцидент, многостадийный технологический процесс, нечёткая логика, нечеткая нейронная сеть, продукционное правило, теория свидетельств, технологическая цепь, функция доверия, функция принадлежности},
pubstate = {published},
tppubtype = {inproceedings}
}
Evidence Theory Application for ANFIS/TSK Neural Network Training in Diagnostic Systems
The paper substantiates a method for creating training data sets for a fuzzy neural network, which can be used to quickly obtain probabilistic estimates of incidents causes in diagnostic systems. The rules for converting hypotheses about potential causes of incidents into intervals of defect probability in the technological chain at some continuous production stage using belief functions are considered. A procedure is proposed for automatically converting these hypotheses into a fuzzy production rules base, which provides training for the ANFIS neural network with the TSK architecture. This will allow you to quickly determine an estimate of the malfunction probability in the process chain that is sufficiently correct for practical use without using expensive computing resources.
Я подготовил и опубликовал довольно много печатных материалов. И, готовя к публикации очередной материал, я каждый раз помнил основное правило — публиковать результаты работы. Не писал текст для того, чтобы написать статью или отчет. Поэтому мне трудно найти свои работу, которая вызывала бы у меня чувство неловкости.
Также отмечу, что писал и сейчас пишу довольно медленно. Для серьезных статей хорошо, если получается одна страница в день. Многократно правлю текст, пытаясь предельно точно передать свою мысль. Не всегда удаётся, но стараюсь. И, как правило, начинаю с плана, в котором фиксирую предполагаемые структуру и содержание текста. Помогает.
Результаты см. выше.