Вы здесь ▸ Экспертиза ▸
Мои публикации
Здесь собраны все мои публикации. Точнее, большинство из них. Статьи в журналах и сборниках конференций, доклады, презентации, отчеты, авторские свидетельства.

Иванов В.К.
Экспериментальное обоснование критериев количественной оценки инновационности объекта Статья в сборнике
Опубликовано в: Единое цифровое пространство научных знаний: проблемы и решения: сборник научных трудов, С. 423-438, Москва; Берлин: Директ-Медиа, 2021, ISBN: 978-54-4991-905-2.
Аннотация | Ссылки | BibTeX | Метки: additive criterion, data warehouse, innovation, innovation index, search query, utility function, аддитивный критерий, инновационность, поисковый запрос, функция полезности, хранилище данных
@inproceedings{V.K.Ivanov15,
title = {Экспериментальное обоснование критериев количественной оценки инновационности объекта},
author = {Иванов В.К.},
url = {https://disk.yandex.ru/i/44q944J6XsaXZA},
isbn = {978-54-4991-905-2},
year = {2021},
date = {2021-03-30},
urldate = {2021-03-30},
booktitle = {Единое цифровое пространство научных знаний: проблемы и решения: сборник научных трудов},
pages = {423-438},
publisher = {Москва; Берлин: Директ-Медиа},
abstract = {Представлены результаты экспериментов, подтверждающие основные идеи предлагаемого подхода к определению инновационности объектов. Этот подход основан на предположении об адекватности отображения жизненного цикла продуктов, описания которых размещены в различных хранилищах данных. Предложенная формальная модель позволяет вычислить количественное значение аддитивного оценочного критерия инновационности объектов. Критерий включает в себя показатели новизны, востребованности и имплементируемости продуктов и/или технологий. Их значения вычисляются на основе данных об объектах и частотных характеристик доступа к ним, взятых в ретроспективе. Представленные данные экспериментов дают возможность оценить корректность принятого подхода. Так, получены сходные тренды изменения показателей для различных объектов, нормирующих функций и источников данных. Отмечена цикличность изменения показателей в течение значимого периода. Это является отражением типичной ситуации падения спроса после достижения его максимума, следствием чего может быть улучшение конструкции, технологии использования, эксплуатационных характеристик объекта. Эксперименты показали совпадение оценки объектов с помощью вычисленных показателей с экспертными оценками тех же объектов. Использование многих источников информации об объектах для сбора исходных данных позволяет получить более адекватные значения. Предлагаемое использование таких методов, как теория свидетельств, дает возможность обоснованно выполнить комбинирование отличающихся результатов.
Experimental Justification of the Object Innovativeness Quantitative Evaluation Criteria
The paper presents the results of the experiments that were conducted to confirm the main ideas of the proposed approach to determining the objects innovativeness. This approach assumed that the product life cycle of whose descriptions are placed in different data warehouses is adequate. The proposed formal model allows us to calculate the quantitative value of the additive evaluation criterion of objects innovativeness. The criterion includes indicators of novelty, demand, and implementability of products or technologies. Their values are calculated based on data about objects and frequency characteristics of access to them taken retrospectively. The obtained experimental data make it possible to evaluate the adopted approach correctness. Thus, similar trends of changes in indicators for various objects, normalizing functions, and data sources were obtained. The cyclical nature of indicators values over a significant period is noted. This reflects a typical situation when falling demand after reaching its maximum, and then may result in an improvement in the design, technology of use, and operational characteristics of the object. Experiments have shown that evaluating objects using calculated indicators coincide with expert estimates of the same objects. Using many sources of information about objects to collect source data allows you to get more adequate values. The proposed use of evidence theory makes it possible to combine different results more reasonably.},
keywords = {additive criterion, data warehouse, innovation, innovation index, search query, utility function, аддитивный критерий, инновационность, поисковый запрос, функция полезности, хранилище данных},
pubstate = {published},
tppubtype = {inproceedings}
}
Experimental Justification of the Object Innovativeness Quantitative Evaluation Criteria
The paper presents the results of the experiments that were conducted to confirm the main ideas of the proposed approach to determining the objects innovativeness. This approach assumed that the product life cycle of whose descriptions are placed in different data warehouses is adequate. The proposed formal model allows us to calculate the quantitative value of the additive evaluation criterion of objects innovativeness. The criterion includes indicators of novelty, demand, and implementability of products or technologies. Their values are calculated based on data about objects and frequency characteristics of access to them taken retrospectively. The obtained experimental data make it possible to evaluate the adopted approach correctness. Thus, similar trends of changes in indicators for various objects, normalizing functions, and data sources were obtained. The cyclical nature of indicators values over a significant period is noted. This reflects a typical situation when falling demand after reaching its maximum, and then may result in an improvement in the design, technology of use, and operational characteristics of the object. Experiments have shown that evaluating objects using calculated indicators coincide with expert estimates of the same objects. Using many sources of information about objects to collect source data allows you to get more adequate values. The proposed use of evidence theory makes it possible to combine different results more reasonably.
Иванов В.К.
Экспериментальная проверка модели оценки инновационности объекта Статья в журнале
Опубликовано в: Вестник Тверского государственного технического университета. Серия «Технические науки», том 8, № 4, С. 54-63, 2020.
Аннотация | Ссылки | BibTeX | Метки: additive criterion, data warehouse, innovation, innovation index, search query, utility function, аддитивный критерий, инновационность, поисковый запрос, функция полезности, хранилище данных
@article{V.K.Ivanov11,
title = {Экспериментальная проверка модели оценки инновационности объекта},
author = {Иванов В.К.},
url = {https://disk.yandex.ru/i/dLU-ISv_EMMz8w},
year = {2020},
date = {2020-11-30},
urldate = {2020-11-30},
journal = {Вестник Тверского государственного технического университета. Серия «Технические науки»},
volume = {8},
number = {4},
pages = {54-63},
publisher = {ТвГТУ},
abstract = {В статье рассматривается подход к количественной оценке инновационности продуктов и технологий. Результаты такой оценки могут быть использованы при создании хранилища данных для описаний объектов со значительным инновационным потенциалом. Модель расчета индекса инноваций основана на понятиях новизны, актуальности и имплементируемости объекта. Даны формальные определения этих показателей и описана методика их расчета. Используются нечеткие методы для обработки (неполной) информации из многочисленных источников и для получения вероятностных оценок инноваций. Представлены экспериментальные данные проверки модели, в том числе расчеты локальных критериев и глобального аддитивного оценочного критерия. Установлены цикличность динамических изменений показателей, их взаимозависимость, некоторые общие особенности продвижения продуктов. Полученные экспериментальные данные согласуются с экспертными оценками исследуемых продуктов. Анализ локальных критериев, использованных в исследовании, дает основание утверждать о правильном использовании аддитивной n-мерной функции полезности. Адекватность предположений и формальных выражений, которые используются в вычислительных алгоритмах отбора информации для размещения в хранилище данных, подтверждается.
Experimental check of model of object innovation evaluation
The article discusses the approach for evaluating the innovation index of the products and technologies. The evaluation results can be used to create a warehouse of the object descriptions with significant innovation potential. The model of innovation index computation is based on the concepts of novelty, relevance, and implementability of the object. Formal definitions of these indicators are given and a methodology for their calculation are described. The fuzzy methods to coprocess (incomplete) data from numerous sources and to obtain probabilistic innovation assessments are used. The experimental data of the model check including the calculations of local criteria and global additive evaluation criterion are presented. The cyclical nature of dynamic changes in indicators, their interdependence was established, some general features of the products promotion were found. The obtained experimental data are consistent with expert estimates of the products under study. The analysis of the local criteria used in the research gives grounds to assert the correct use of the additive ndimensional utility function. The adequacy of assumptions and formal expressions that are used in computational algorithms for selection information for data warehouse is confirmed. },
keywords = {additive criterion, data warehouse, innovation, innovation index, search query, utility function, аддитивный критерий, инновационность, поисковый запрос, функция полезности, хранилище данных},
pubstate = {published},
tppubtype = {article}
}
Experimental check of model of object innovation evaluation
The article discusses the approach for evaluating the innovation index of the products and technologies. The evaluation results can be used to create a warehouse of the object descriptions with significant innovation potential. The model of innovation index computation is based on the concepts of novelty, relevance, and implementability of the object. Formal definitions of these indicators are given and a methodology for their calculation are described. The fuzzy methods to coprocess (incomplete) data from numerous sources and to obtain probabilistic innovation assessments are used. The experimental data of the model check including the calculations of local criteria and global additive evaluation criterion are presented. The cyclical nature of dynamic changes in indicators, their interdependence was established, some general features of the products promotion were found. The obtained experimental data are consistent with expert estimates of the products under study. The analysis of the local criteria used in the research gives grounds to assert the correct use of the additive ndimensional utility function. The adequacy of assumptions and formal expressions that are used in computational algorithms for selection information for data warehouse is confirmed.
Иванов В.К., Думина Д.С., Семенов Н.А.
Определение весовых коэффициентов для аддитивной фитнес-функции генетического алгоритма Статья в журнале
Опубликовано в: Программные продукты и системы (Software & Systems), том 33, № 1, С. 47-53, 2020, ISSN: 0236-235X.
Аннотация | Ссылки | BibTeX | Altmetric | Метки: innovation index, аддитивный критерий, весовой коэффициент, генетический алгоритм, поисковый запрос, релевантность, фитнес-функция, хранилище данных
@article{V.K.Ivanov10,
title = {Определение весовых коэффициентов для аддитивной фитнес-функции генетического алгоритма},
author = {Иванов В.К. and Думина Д.С. and Семенов Н.А.},
url = {https://disk.yandex.ru/i/-5Uw771oZAt7cA},
doi = {10.15827/0236-235X.129.047-053},
issn = {0236-235X},
year = {2020},
date = {2020-00-01},
urldate = {2020-00-01},
journal = {Программные продукты и системы (Software & Systems)},
volume = {33},
number = {1},
pages = {47-53},
publisher = {Программные продукты и системы (Software & Systems)},
abstract = {Представлено возможное решение задачи выбора способа аналитического определения весовых коэффициентов для аддитивной фитнес-функции генетического алгоритма. Этот алгоритм является основой эволюционного процесса, формирующего в поисковой системе устойчивую и эффективную популяцию запросов для получения высокорелевантных результатов. Приведено формальное описание фитнес-функции алгоритма, которая представляет собой взвешенную сумму трех неоднородных критериев.
Подробно описаны выбранные способы аналитического определения весовых коэффициентов, при этом отмечается невозможность использования методов экспертных оценок. Рассмотрена методика проведения исследований. Описывается исходный набор данных, в том числе диапазоны данных, принятые для вычисления весовых коэффициентов различными способами. Порядок вычислений проиллюстрирован примерами. Результаты исследований, показанные в графической форме, наглядно демонстрируют поведение фитнес-функции при работе генетического алгоритма с использованием различных вариантов весовых коэффициентов.
Анализ результатов позволяет сделать вывод о предпочтительности расчета весовых коэффициентов фитнес-функции данной популяции запросов, выполненного с использованием результатов всех запросов этой популяции. Вывод базируется на наличии последовательных улучшений популяций запросов, характерных для корректной работы генетических алгоритмов, а также на очевидном обнаружении в ходе экспериментов локальных и глобального максимумов фитнес-функции. При использовании других способов расчета весовых коэффициентов подобного не наблюдается. Способ определения весовых коэффициентов для аддитивного критерия оптимальности может повысить качество работы генетического алгоритма для формирования эффективных поисковых запросов. В частности, повышается вероятность быстрого обнаружения локальных экстремумов фитнес-функции, которые на заданной области ее определения могут стать оптимальным решением. },
keywords = {innovation index, аддитивный критерий, весовой коэффициент, генетический алгоритм, поисковый запрос, релевантность, фитнес-функция, хранилище данных},
pubstate = {published},
tppubtype = {article}
}
Подробно описаны выбранные способы аналитического определения весовых коэффициентов, при этом отмечается невозможность использования методов экспертных оценок. Рассмотрена методика проведения исследований. Описывается исходный набор данных, в том числе диапазоны данных, принятые для вычисления весовых коэффициентов различными способами. Порядок вычислений проиллюстрирован примерами. Результаты исследований, показанные в графической форме, наглядно демонстрируют поведение фитнес-функции при работе генетического алгоритма с использованием различных вариантов весовых коэффициентов.
Анализ результатов позволяет сделать вывод о предпочтительности расчета весовых коэффициентов фитнес-функции данной популяции запросов, выполненного с использованием результатов всех запросов этой популяции. Вывод базируется на наличии последовательных улучшений популяций запросов, характерных для корректной работы генетических алгоритмов, а также на очевидном обнаружении в ходе экспериментов локальных и глобального максимумов фитнес-функции. При использовании других способов расчета весовых коэффициентов подобного не наблюдается. Способ определения весовых коэффициентов для аддитивного критерия оптимальности может повысить качество работы генетического алгоритма для формирования эффективных поисковых запросов. В частности, повышается вероятность быстрого обнаружения локальных экстремумов фитнес-функции, которые на заданной области ее определения могут стать оптимальным решением.
Иванов В.К., Думина Д.С., Семенов Н.А.
К вопросу о реализации генетического алгоритма для решения задач поиска тематической информации в интернете Статья в сборнике
Опубликовано в: Международный научно-технический конгресс «Интеллектуальные системы и информационные технологии - 2020». «IS&IT’20». Труды конгресса. Секция 1 «Эволюционное моделирование», С. 17-28, Таганрог, 2020, ISBN: 978-56-0436-899-2.
Аннотация | Ссылки | BibTeX | Метки: additive function, fitness function, genetic algorithm, relevance, search query, weight factor, аддитивный критерий, весовой коэффициент, генетический алгоритм, поисковый запрос, релевантность, фитнес-функция
@inproceedings{V.K.Ivanov13,
title = {К вопросу о реализации генетического алгоритма для решения задач поиска тематической информации в интернете},
author = {Иванов В.К. and Думина Д.С. and Семенов Н.А.},
url = {https://disk.yandex.ru/i/wYjDcfkpmMg4Zw},
isbn = {978-56-0436-899-2},
year = {2020},
date = {2020-00-01},
urldate = {2020-00-01},
booktitle = {Международный научно-технический конгресс «Интеллектуальные системы и информационные технологии - 2020». «IS&IT’20». Труды конгресса. Секция 1 «Эволюционное моделирование»},
volume = {1},
pages = {17-28},
publisher = {Таганрог},
abstract = {В статье представлено возможное решение задачи выбора способа аналитического определения весовых коэффициентов для аддитивной фитнес-функции генетического алгоритма. Этот генетический алгоритм является основой эволюционного процесса, формирующего в поисковой системе устойчивую и эффективную популяцию запросов для получения высоко релевантных результатов. Приведено формальное описание фитнес-функции алгоритма, которая представляет собой взвешенную сумму трех неоднородных критериев.
V.K. Ivanov, D.S. Dumina, N.A. Semenov. On the Impletmentation of a Genetic Algorithm for Solving Problems of Searching for Thematic Information on the Internet
A possible solution to the problem of choosing a method for the weight factors analytical determination for the genetic algorithm additive fitness function is presented. This genetic algorithm is the evolutionary process basis, which forms a stable and effective queries population in the search engine to obtain highly relevant results. A fitness function formal description, which is a weighted sum of three heterogeneous criteria is given.},
keywords = {additive function, fitness function, genetic algorithm, relevance, search query, weight factor, аддитивный критерий, весовой коэффициент, генетический алгоритм, поисковый запрос, релевантность, фитнес-функция},
pubstate = {published},
tppubtype = {inproceedings}
}
V.K. Ivanov, D.S. Dumina, N.A. Semenov. On the Impletmentation of a Genetic Algorithm for Solving Problems of Searching for Thematic Information on the Internet
A possible solution to the problem of choosing a method for the weight factors analytical determination for the genetic algorithm additive fitness function is presented. This genetic algorithm is the evolutionary process basis, which forms a stable and effective queries population in the search engine to obtain highly relevant results. A fitness function formal description, which is a weighted sum of three heterogeneous criteria is given.
Иванов В.К.
Некоторые результаты экспериментальной проверки модели количественной оценки инновационности объекта Статья в журнале
Опубликовано в: Информация и инновации, том 15, № 3, С. 27–36, 2020.
Аннотация | Ссылки | BibTeX | Altmetric | Метки: additive criterion, data warehouse, innovation, innovation index, search query, utility function, аддитивный критерий, инновационность, поисковый запрос, функция полезности, хранилище данных
@article{V.K.Ivanov14,
title = {Некоторые результаты экспериментальной проверки модели количественной оценки инновационности объекта},
author = {Иванов В.К. },
url = {https://disk.yandex.ru/i/49fIoBECHvb0DA},
doi = {10.31432/1994-2443-2020-15-3-27-36},
year = {2020},
date = {2020-00-01},
urldate = {2020-00-01},
journal = {Информация и инновации},
volume = {15},
number = {3},
pages = {27–36},
abstract = {В статье представлены результаты экспериментов, которые были проведены для подтверждения основных идей предлагаемого подхода к определению инновационности объектов. Этот подход основан на предположении об адекватности отображения жизненного цикла продуктов, описания которых размещены в различных хранилищах данных. Предложенная формальная модель позволяет вычислить количественное значение аддитивного оценочного критерия инновационности объектов. Полученные данные экспериментов дают возможность оценить корректность принятого подхода.
Some Results of Experimental Check of The Model of the Object Innovativeness Quantitative Evaluation
The paper presents the results of the experiments that were conducted to confirm the main ideas of the proposed approach to determining the objects innovativeness. This approach assumed that the product life cycle of whose descriptions are placed in different data warehouses is adequate. The proposed formal model allows us to calculate the quantitative value of the additive evaluation criterion of objects innovativeness. The obtained experimental data make it possible to evaluate the adopted approach correctness.},
keywords = {additive criterion, data warehouse, innovation, innovation index, search query, utility function, аддитивный критерий, инновационность, поисковый запрос, функция полезности, хранилище данных},
pubstate = {published},
tppubtype = {article}
}
Some Results of Experimental Check of The Model of the Object Innovativeness Quantitative Evaluation
The paper presents the results of the experiments that were conducted to confirm the main ideas of the proposed approach to determining the objects innovativeness. This approach assumed that the product life cycle of whose descriptions are placed in different data warehouses is adequate. The proposed formal model allows us to calculate the quantitative value of the additive evaluation criterion of objects innovativeness. The obtained experimental data make it possible to evaluate the adopted approach correctness.
Иванов В.К.
Особенности кодирования запросов при использовании генетического алгоритма в эволюционной модели тематического поиска Статья в сборнике
Опубликовано в: Энергетика, информатика, инновации - 2017 (электроэнергетика, электротехника и теплоэнергетика, математическое моделирование и информационные технологии в производстве): сборник трудов VII Междунар. научно-техн. конф., 23-24 ноября 2017 г., г. Смоленск, С. 277-281, Смоленск, 2017, ISBN: 9785918123601.
Аннотация | Ссылки | BibTeX | Метки: data centre, innovation index, генетический алгоритм, генотип, кодирование, кроссинговер, поисковый запрос, схема, тематический поиск, теорема Холланда, фитнес-функция
@inproceedings{nokey,
title = {Особенности кодирования запросов при использовании генетического алгоритма в эволюционной модели тематического поиска},
author = {Иванов В.К.},
url = {https://disk.yandex.ru/i/n6EvZQ8rG8PIyQ},
isbn = {9785918123601},
year = {2017},
date = {2017-11-24},
urldate = {2022-09-25},
booktitle = {Энергетика, информатика, инновации - 2017 (электроэнергетика, электротехника и теплоэнергетика, математическое моделирование и информационные технологии в производстве): сборник трудов VII Междунар. научно-техн. конф., 23-24 ноября 2017 г., г. Смоленск},
volume = {1},
pages = {277-281},
publisher = {Смоленск},
abstract = {В статье рассматривается постановка задачи и дается обоснование способа кодирования генотипа для генетического алгоритма, разработанного как компонент технологии выполнения документного тематического поиска инноваций. Отмечены условия корректной проверки выполнения теоремы Холланда для алгоритма, использующего предложенный подход. Приведены результаты некоторых сравнительных оценок.},
keywords = {data centre, innovation index, генетический алгоритм, генотип, кодирование, кроссинговер, поисковый запрос, схема, тематический поиск, теорема Холланда, фитнес-функция},
pubstate = {published},
tppubtype = {inproceedings}
}
Иванов В.К.
Обоснование и постановка задачи прогнозирования результатов генетического алгоритма Статья в журнале
Опубликовано в: том 8, № 57, С. 5-13, 2016.
Аннотация | Ссылки | BibTeX | Метки: crossover, data centre, defining length, fitness function, genetic algorithm, genotype, Holland’s schema theorem, order, query, representation, scheme, subject search, генетический алгоритм, генотип, кодирование, кроссинговер, определяющая длина, поисковый запрос, порядок, схема, тематический поиск, теорема Холланда, фитнес-функция
@article{nokey,
title = {Обоснование и постановка задачи прогнозирования результатов генетического алгоритма},
author = {Иванов В.К.},
url = {https://disk.yandex.ru/i/I6iQWk2vOm4p8A
https://cyberleninka.ru/article/n/obosnovanie-i-postanovka-zadachi-prognozirovaniya-rezultatov-geneticheskogo-algoritma/viewer},
year = {2016},
date = {2016-12-31},
urldate = {2016-12-31},
volume = {8},
number = {57},
pages = {5-13},
publisher = {СибАК},
abstract = {В статье обосновывается и формулируется постановка задачи прогнозирования результатов генетического алгоритма, разработанного для выполнения документного тематического поиска. Утверждается необходимость и полезность проверки выполнения теоремы схем Холланда для указанного алгоритма. Отмечены условия корректной проверки, в частности требования к кодированию генотипа запросов и сглаживанию фитнес-функции. Предложен метод кодирования генотипа, который использует расстояние между векторами, представ-ляющими запросы.
Vladimir Ivanov
Rationale Of The Problem With Prediction Of Genetic Algorithm Results
This article presents and explains the problem with prediction of the genetic algorithm results developed to perform a subject document search. The article alleges the necessity and usefulness of the verification Holland's scheme theorem for a specified algorithm. The correct test conditions and requirements including the query genotype representation and smoothing of the fitness function are described. The genotype representation method that uses the distance between vectors is offered.},
keywords = {crossover, data centre, defining length, fitness function, genetic algorithm, genotype, Holland’s schema theorem, order, query, representation, scheme, subject search, генетический алгоритм, генотип, кодирование, кроссинговер, определяющая длина, поисковый запрос, порядок, схема, тематический поиск, теорема Холланда, фитнес-функция},
pubstate = {published},
tppubtype = {article}
}
Vladimir Ivanov
Rationale Of The Problem With Prediction Of Genetic Algorithm Results
This article presents and explains the problem with prediction of the genetic algorithm results developed to perform a subject document search. The article alleges the necessity and usefulness of the verification Holland's scheme theorem for a specified algorithm. The correct test conditions and requirements including the query genotype representation and smoothing of the fitness function are described. The genotype representation method that uses the distance between vectors is offered.
Иванов В.К., Иванов
Обоснование и постановка задачи прогнозирования результатов генетического алгоритма Статья в журнале
Опубликовано в: Инновации в науке, том 57, № 8, С. 5-13, 2016, (Иванов В.К. Обоснование и постановка задачи прогнозирования результатов генетического алгоритма // Инновации в науке. – 2016. - № 8 (57). – C. 5-13.).
Аннотация | Ссылки | BibTeX | Метки: data centre, fSimilarity, innovation, генетический алгоритм, генотип, кодирование, кроссинговер, поисковый запрос, схема, тематический поиск, теорема Холланда, фитнес-функция
@article{134_9808a672-6f1b-45cb-a604-4e571f348b8d,
title = {Обоснование и постановка задачи прогнозирования результатов генетического алгоритма},
author = {Иванов В.К. and Иванов},
url = {https://disk.yandex.ru/i/vAD-Om2u1EpS6A},
year = {2016},
date = {2016-12-29},
urldate = {2025-01-29},
journal = {Инновации в науке},
volume = {57},
number = {8},
pages = {5-13},
publisher = {СибАК},
abstract = {<p>В статье обосновывается и формулируется постановка задачи прогнозирования результатов генетического алгоритма, разработанного для выполнения документного тематического поиска. Утверждается необходимость и полезность проверки выполнения теоремы схем Холланда для указанного алгоритма. Отмечены условия корректной проверки, в частности требования к кодированию генотипа запросов и сглаживанию фитнес-функции. Предложен метод кодирования генотипа, который использует расстояние между векторами, представляющими запросы.</p><p> </p>},
note = {Иванов В.К. Обоснование и постановка задачи прогнозирования результатов генетического алгоритма // Инновации в науке. – 2016. - № 8 (57). – C. 5-13.},
keywords = {data centre, fSimilarity, innovation, генетический алгоритм, генотип, кодирование, кроссинговер, поисковый запрос, схема, тематический поиск, теорема Холланда, фитнес-функция},
pubstate = {published},
tppubtype = {article}
}
Иванов В.К., Мескин П.И.
Реализация генетического алгоритма для эффективного документального тематического поиска Статья в журнале
Опубликовано в: Программные продукты и системы, № 4, С. 125-134, 2014, (Иванов В.К., Мескин П.И. Реализация генетического алгоритма для эффективного документального тематического поиска // Программные продукты и системы. – Тверь : Центрпрограммсистем, 2014. - № 4 (108). – С. 125-134.).
Аннотация | Ссылки | BibTeX | Altmetric | Метки: data centre, innovation index, генетический алгоритм, документ, мутация, поисковый запрос, популяция, приспособленность, ранжирование, релевантность, скрещивание, тематический поиск, фильтрация.
@article{104_a408fb2e-ad74-43be-ba98-fad95d412d90,
title = {Реализация генетического алгоритма для эффективного документального тематического поиска},
author = {Иванов В.К. and Мескин П.И.},
url = {https://disk.yandex.ru/i/ofhqSdQhLPe9_A},
doi = {10.15827/0236-235X.108},
year = {2014},
date = {2014-12-30},
urldate = {2025-01-22},
journal = {Программные продукты и системы},
number = {4},
pages = {125-134},
publisher = {Тверь: Центрпрограммсистем},
abstract = {<p>Качество документального тематического поиска, то есть поиска документов, содержащих координированную информацию в заданном тематическом сегменте, не всегда удовлетворительно. Несмотря на наличие мощных поисковых систем для информационных ресурсов Интернета или для специализированных БД, процесс поиска остается трудоемким и слабо поддерживается программно и методологически.</p><p>В настоящей статье описывается программная реализация генетического алгоритма для выявления и отбора наиболее релевантных результатов, полученных в ходе последовательно выполняемых операций тематического поиска. При этом моделируется эволюционный процесс, который формирует устойчивую и эффективную популяцию поисковых запросов, образует поисковый образ документов или семантическое ядро, создает релевантные множества искомых документов, позволяет автоматически классифицировать результаты поиска. В статье обсуждаются особенности тематического поиска, обосновывается применение генетического алгоритма, описываются аргументы целевой функции, рассматриваются основные шаги и параметры алгоритма. Отмечается, что целевая функция, или критерий качества поиска, определяется позицией документа в списках результатов, построенных поисковой системой при выполнении максимального числа различных запросов, и семантической близостью к поисковому образу документов заданной тематики. Достаточно подробно описана программная реализация: основные объектные модели, пользовательский интерфейс, основная библиотека алгоритма, модули морфологического анализа, семантического анализа сходства текстов, поиска, управления БД, управления метаданными. Приводятся сведения о составе классов модулей и их компонентов.</p><p>В заключение отмечается, что реализованный генетический алгоритм является одним из элементов ПО разрабатываемой интеллектуальной системы информационной поддержки инноваций в науке и образовании. Он играет важную роль в обеспечении адаптивности функционирования поисковых механизмов, а разработанное ПО алгоритма создает достаточно широкий базис для дальнейших исследований и разработок.</p>},
note = {Иванов В.К., Мескин П.И. Реализация генетического алгоритма для эффективного документального тематического поиска // Программные продукты и системы. – Тверь : Центрпрограммсистем, 2014. - № 4 (108). – С. 125-134.},
keywords = {data centre, innovation index, генетический алгоритм, документ, мутация, поисковый запрос, популяция, приспособленность, ранжирование, релевантность, скрещивание, тематический поиск, фильтрация.},
pubstate = {published},
tppubtype = {article}
}
Иванов В.К., Палюх Б.В., Мескин П.И.
Прототип программной реализации генетического алгоритма для документального поиска Статья в сборнике
Опубликовано в: Четырнадцатая национальная конференция по искусственному интеллекту с международным участием КИИ-2014 (24-27 сентября 2014 г., г. Казань, Россия). Труды конференции. Т. 3. , С. 191-199, Казань, 2014, (Иванов В.К., Палюх Б.В., Мескин П.И. Прототип программной реализации генетического алгоритма для документального поиска //Четырнадцатая национальная конференция по искусственному интеллекту с международным участием КИИ-2014 (24-27 сентября 2014 г., г. Казань, Россия). Труды конференции. Т. 3. - Казань, 2014. - С. 191-199.).
Аннотация | Ссылки | BibTeX | Метки: data centre, генетический алгоритм, поисковый запрос, релевантность, тематический поиск
@inproceedings{106_c4575387-7cea-4e54-85ef-0b6bba3ffab9,
title = {Прототип программной реализации генетического алгоритма для документального поиска},
author = {Иванов В.К. and Палюх Б.В. and Мескин П.И.},
url = {https://disk.yandex.ru/i/tadmCTfdqe5tXg},
year = {2014},
date = {2014-09-29},
urldate = {2014-09-29},
booktitle = {Четырнадцатая национальная конференция по искусственному интеллекту с международным участием КИИ-2014 (24-27 сентября 2014 г., г. Казань, Россия). Труды конференции. Т. 3. },
volume = {3},
pages = {191-199},
publisher = {Казань},
abstract = {<p>В статье представлен прототип программной реализации генетического алгоритма, который может использоваться для формирования эффективных поисковых запросов и отбора релевантных результатов при выполнении документального тематического поиска. Рассматриваются целевая функция, основные шаги и параметры алгоритма. Описываются компоненты программного обеспечения. Приведены некоторые результаты предварительных исследований алгоритма.</p>},
note = {Иванов В.К., Палюх Б.В., Мескин П.И. Прототип программной реализации генетического алгоритма для документального поиска //Четырнадцатая национальная конференция по искусственному интеллекту с международным участием КИИ-2014 (24-27 сентября 2014 г., г. Казань, Россия). Труды конференции. Т. 3. - Казань, 2014. - С. 191-199.},
keywords = {data centre, генетический алгоритм, поисковый запрос, релевантность, тематический поиск},
pubstate = {published},
tppubtype = {inproceedings}
}
Я подготовил и опубликовал довольно много печатных материалов. И, готовя к публикации очередной материал, я каждый раз помнил основное правило — публиковать результаты работы. Не писал текст для того, чтобы написать статью или отчет. Поэтому мне трудно найти свои работу, которая вызывала бы у меня чувство неловкости.
Также отмечу, что писал и сейчас пишу довольно медленно. Для серьезных статей хорошо, если получается одна страница в день. Многократно правлю текст, пытаясь предельно точно передать свою мысль. Не всегда удаётся, но стараюсь. И, как правило, начинаю с плана, в котором фиксирую предполагаемые структуру и содержание текста. Помогает.
Результаты см. выше.