Вы здесь ▸ Экспертиза ▸
Мои публикации
Здесь собраны все мои публикации. Точнее, большинство из них. Статьи в журналах и сборниках конференций, доклады, презентации, отчеты, авторские свидетельства.

Иванов В.К.
Прогнозирование диагностических данных с использованием нечетких нейронных сетей Статья в сборнике
Опубликовано в: Современные технологии и инновации, С. 169-179, ТвГТУ, 2023, ISBN: 9785799513023.
Аннотация | Ссылки | BibTeX | Метки: diagnostic variable, forecast, fuzzy neural network, membership function, production rule, status-4, technology, time series, training dataset, временной ряд, диагностическая переменная, нечеткая нейронная сеть, обучающий набор данных, прогноз, продукционное правило, технологический процесс, функция принадлежности
@inproceedings{nokey,
title = {Прогнозирование диагностических данных с использованием нечетких нейронных сетей},
author = {Иванов В.К.},
url = {https://disk.yandex.ru/i/gsIW0s0vQKW6xg},
isbn = {9785799513023},
year = {2023},
date = {2023-07-31},
urldate = {2023-07-31},
booktitle = {Современные технологии и инновации},
pages = {169-179},
publisher = {ТвГТУ},
abstract = {В статье описан подход к решению задач анализа диагностической информации о функционировании сложного технологического процесса на примере прогнозирования трендов и временного ряда значений диагностических переменных. Цель проведённого исследования – показать возможность применения нечёткого сглаживания временного ряда и нечётких нейронных сетей для смягчения последствий неопределённости факторов, влияющих на функционирование технологического процесса, и неполноты информации о них. Предлагается модель прогнозирования, основанная на использовании нечётких временных рядов. Эта модель используется для формализации системы нечётких продукционных правил. Обосновывается применение нейронной сети с архитектурой ANFIS. Описывается методика подготовки обучающих и проверочных наборов реальных данных, настройки и обучения нейронной сети. Представлены некоторые результаты оценки качества обучения нейронной сети. Отмечается достаточная точность прогноза, достигаемая без использования затратных вычислительных ресурсов. Делается вывод о применимости предложенного подхода к данной и подобным задачам.
V.K. Ivanov. Prediction diagnostic data using fuzzy neural networks
The paper describes an approach to solving the problems of analyzing diagnostic information about the complex technological process functioning by the example of forecasting diagnostic variables values trends and their a time series. The study purpose is to show the possibility of using time series fuzzy smoothing and fuzzy neural networks to mitigate the factors uncertainty effects affecting the technological process functioning and incompleteness of information about such factors. A sales forecasting model based on the fuzzy time series use is proposed. This model is used to formalize fuzzy production rules system. The application of a neural network with ANFIS architecture is justified. The methodology of preparing training and verification real data sets, setting up and training a neural network is described. Some results of the neural network training quality evaluation are presented. There is a sufficient accuracy of the forecast, achieved without the expensive computing resources use. The conclusion is made about the proposed approach applicability to this and similar tasks.},
keywords = {diagnostic variable, forecast, fuzzy neural network, membership function, production rule, status-4, technology, time series, training dataset, временной ряд, диагностическая переменная, нечеткая нейронная сеть, обучающий набор данных, прогноз, продукционное правило, технологический процесс, функция принадлежности},
pubstate = {published},
tppubtype = {inproceedings}
}
V.K. Ivanov. Prediction diagnostic data using fuzzy neural networks
The paper describes an approach to solving the problems of analyzing diagnostic information about the complex technological process functioning by the example of forecasting diagnostic variables values trends and their a time series. The study purpose is to show the possibility of using time series fuzzy smoothing and fuzzy neural networks to mitigate the factors uncertainty effects affecting the technological process functioning and incompleteness of information about such factors. A sales forecasting model based on the fuzzy time series use is proposed. This model is used to formalize fuzzy production rules system. The application of a neural network with ANFIS architecture is justified. The methodology of preparing training and verification real data sets, setting up and training a neural network is described. Some results of the neural network training quality evaluation are presented. There is a sufficient accuracy of the forecast, achieved without the expensive computing resources use. The conclusion is made about the proposed approach applicability to this and similar tasks.
Иванов В.К., Бибиков И.Е.
Прогнозирование показателей вендинговой торговли с помощью нечетких нейронных сетей Статья в сборнике
Опубликовано в: Междисциплинарные исследования экономических систем, С. 136-143, ТвГТУ, 2023, ISBN: 9785799513085.
Аннотация | Ссылки | BibTeX | Метки: fuzzy neural network, membership function, other projects, sales forecast, time series, vending, вендинг, временной ряд, нечеткая нейронная сеть, прогноз, продажа, функция принадлежности
@inproceedings{nokey,
title = {Прогнозирование показателей вендинговой торговли с помощью нечетких нейронных сетей},
author = {Иванов В.К. and Бибиков И.Е.},
url = {https://disk.yandex.ru/i/iCmwyyGB0PwdRQ},
isbn = {9785799513085},
year = {2023},
date = {2023-07-01},
urldate = {2023-07-01},
booktitle = {Междисциплинарные исследования экономических систем},
pages = {136-143},
publisher = {ТвГТУ},
abstract = {В статье описан подход к решению задач обслуживания торговых автоматов на примере прогнозирования трендов и временного ряда продаж товаров заданного вида с использованием нечеткой нейронной сети. Цель проведенного исследования – показать применение нечеткого сглаживания временного ряда и нейронных сетей для смягчения последствий неопределенности процессов, влияющих на функционирование торговых автоматов. Предложена модель прогнозирования продаж. Сделан вывод о применимости предложенного подхода к данной и подобным задачам.
Forecasting of Vending Trade Indicators Using Fuzzy Neural Networks
V.K. Ivanov, I.E. Bibikov
The article describes an approach to solving the problems of vending machine maintenance on the example of forecasting trends and time series of sales of goods of a given type using a fuzzy neural network. The purpose of the research is to show the application of fuzzy smoothing of time series and neural networks to mitigate the effects of uncertainty of the processes affecting the function-ionization of vending machines. A sales forecasting model is proposed. The applicability of the proposed approach to this and similar problems is concluded. },
keywords = {fuzzy neural network, membership function, other projects, sales forecast, time series, vending, вендинг, временной ряд, нечеткая нейронная сеть, прогноз, продажа, функция принадлежности},
pubstate = {published},
tppubtype = {inproceedings}
}
Forecasting of Vending Trade Indicators Using Fuzzy Neural Networks
V.K. Ivanov, I.E. Bibikov
The article describes an approach to solving the problems of vending machine maintenance on the example of forecasting trends and time series of sales of goods of a given type using a fuzzy neural network. The purpose of the research is to show the application of fuzzy smoothing of time series and neural networks to mitigate the effects of uncertainty of the processes affecting the function-ionization of vending machines. A sales forecasting model is proposed. The applicability of the proposed approach to this and similar problems is concluded.
Я подготовил и опубликовал довольно много печатных материалов. И, готовя к публикации очередной материал, я каждый раз помнил основное правило — публиковать результаты работы. Не писал текст для того, чтобы написать статью или отчет. Поэтому мне трудно найти свои работу, которая вызывала бы у меня чувство неловкости.
Также отмечу, что писал и сейчас пишу довольно медленно. Для серьезных статей хорошо, если получается одна страница в день. Многократно правлю текст, пытаясь предельно точно передать свою мысль. Не всегда удаётся, но стараюсь. И, как правило, начинаю с плана, в котором фиксирую предполагаемые структуру и содержание текста. Помогает.
Результаты см. выше.