Вы здесь ▸ Обсуждение ▸
Мои публикации
Публикации: статьи в журналах и сборниках конференций, доклады, презентации, отчеты, авторские свидетельства.
Ivanov V.K., Palyukh B.V., Sotnikov A.N.
Additive Criterion to Evaluate Object Innovation Journal Article
In: Lobachevskii Journal of Mathematics, vol. 42, no. 11, pp. 2537-2544, 2021.
Abstract | Links | BibTeX | Altmetric | Метки: additive criterion, additive independence, demand, implementability, innovation, innovation index, novelty, partial criterion, utility function
@article{nokey,
title = {Additive Criterion to Evaluate Object Innovation},
author = {Ivanov V.K. and Palyukh B.V. and Sotnikov A.N.},
url = {https://disk.yandex.ru/i/IYx85tDFDWH6ZA
https://link.springer.com/10.1134/S1995080221110111},
doi = {10.1134/S1995080221110111},
year = {2021},
date = {2021-12-31},
urldate = {2021-12-31},
journal = {Lobachevskii Journal of Mathematics},
volume = {42},
number = {11},
pages = {2537-2544},
abstract = {The article discusses some aspects of the object descriptions having significant innovation potential. The procedure for selecting such descriptions consists of two consecutive phases. The first phase involves generating effective search queries with a special genetic algorithm. In the second phase, the model developed determines the likely innovativeness of the object. Meanwhile the values of additive selection criteria are calculated. In the latter case, the criterion is the index of innovativeness. The purpose of the article is to justify the additive criterion applicability for calculating the value of the object innovativeness. The article describes general conditions of applying additive evaluation criteria and shows how these conditions are met in the case in question. The analysis of the partial criteria gives grounds to assert their additive independence and, therefore, the correct use of additive n-dimensional utility function. Some additional reasons for applying additive criterion are also given. In general, the article proposes a unified approach to generating global assessment criteria and the relevance of their unified formal structure is shown. Note that earlier the authors proposed a similar approach to the fitness function formation of the genetic algorithm used. Despite the different physical meaning and purpose of the criteria, their relevance to common formal structure is proved.
Ivanov, V.K., Palyukh, B.V. & Sotnikov, A.N. Additive Criterion to Evaluate Object Innovation. Lobachevskii J Math 42, 2537–2544 (2021). https://doi.org/10.1134/S1995080221110111 (WoS, Scopus)},
keywords = {additive criterion, additive independence, demand, implementability, innovation, innovation index, novelty, partial criterion, utility function},
pubstate = {published},
tppubtype = {article}
}
Ivanov, V.K., Palyukh, B.V. & Sotnikov, A.N. Additive Criterion to Evaluate Object Innovation. Lobachevskii J Math 42, 2537–2544 (2021). https://doi.org/10.1134/S1995080221110111 (WoS, Scopus)
Иванов В.К.
Экспериментальное обоснование критериев количественной оценки инновационности объекта Статья в сборнике
In: Единое цифровое пространство научных знаний: проблемы и решения: сборник научных трудов, pp. 423-438, Москва; Берлин: Директ-Медиа, 2021, ISBN: 978-54-4991-905-2.
Abstract | Links | BibTeX | Метки: additive criterion, data warehouse, innovation, innovation index, search query, utility function, аддитивный критерий, инновационность, поисковый запрос, функция полезности, хранилище данных
@inproceedings{V.K.Ivanov15,
title = {Экспериментальное обоснование критериев количественной оценки инновационности объекта},
author = {Иванов В.К.},
url = {https://disk.yandex.ru/i/44q944J6XsaXZA},
isbn = {978-54-4991-905-2},
year = {2021},
date = {2021-03-30},
urldate = {2021-03-30},
booktitle = {Единое цифровое пространство научных знаний: проблемы и решения: сборник научных трудов},
pages = {423-438},
publisher = {Москва; Берлин: Директ-Медиа},
abstract = {Представлены результаты экспериментов, подтверждающие основные идеи предлагаемого подхода к определению инновационности объектов. Этот подход основан на предположении об адекватности отображения жизненного цикла продуктов, описания которых размещены в различных хранилищах данных. Предложенная формальная модель позволяет вычислить количественное значение аддитивного оценочного критерия инновационности объектов. Критерий включает в себя показатели новизны, востребованности и имплементируемости продуктов и/или технологий. Их значения вычисляются на основе данных об объектах и частотных характеристик доступа к ним, взятых в ретроспективе. Представленные данные экспериментов дают возможность оценить корректность принятого подхода. Так, получены сходные тренды изменения показателей для различных объектов, нормирующих функций и источников данных. Отмечена цикличность изменения показателей в течение значимого периода. Это является отражением типичной ситуации падения спроса после достижения его максимума, следствием чего может быть улучшение конструкции, технологии использования, эксплуатационных характеристик объекта. Эксперименты показали совпадение оценки объектов с помощью вычисленных показателей с экспертными оценками тех же объектов. Использование многих источников информации об объектах для сбора исходных данных позволяет получить более адекватные значения. Предлагаемое использование таких методов, как теория свидетельств, дает возможность обоснованно выполнить комбинирование отличающихся результатов.
Experimental Justification of the Object Innovativeness Quantitative Evaluation Criteria
The paper presents the results of the experiments that were conducted to confirm the main ideas of the proposed approach to determining the objects innovativeness. This approach assumed that the product life cycle of whose descriptions are placed in different data warehouses is adequate. The proposed formal model allows us to calculate the quantitative value of the additive evaluation criterion of objects innovativeness. The criterion includes indicators of novelty, demand, and implementability of products or technologies. Their values are calculated based on data about objects and frequency characteristics of access to them taken retrospectively. The obtained experimental data make it possible to evaluate the adopted approach correctness. Thus, similar trends of changes in indicators for various objects, normalizing functions, and data sources were obtained. The cyclical nature of indicators values over a significant period is noted. This reflects a typical situation when falling demand after reaching its maximum, and then may result in an improvement in the design, technology of use, and operational characteristics of the object. Experiments have shown that evaluating objects using calculated indicators coincide with expert estimates of the same objects. Using many sources of information about objects to collect source data allows you to get more adequate values. The proposed use of evidence theory makes it possible to combine different results more reasonably.},
keywords = {additive criterion, data warehouse, innovation, innovation index, search query, utility function, аддитивный критерий, инновационность, поисковый запрос, функция полезности, хранилище данных},
pubstate = {published},
tppubtype = {inproceedings}
}
Experimental Justification of the Object Innovativeness Quantitative Evaluation Criteria
The paper presents the results of the experiments that were conducted to confirm the main ideas of the proposed approach to determining the objects innovativeness. This approach assumed that the product life cycle of whose descriptions are placed in different data warehouses is adequate. The proposed formal model allows us to calculate the quantitative value of the additive evaluation criterion of objects innovativeness. The criterion includes indicators of novelty, demand, and implementability of products or technologies. Their values are calculated based on data about objects and frequency characteristics of access to them taken retrospectively. The obtained experimental data make it possible to evaluate the adopted approach correctness. Thus, similar trends of changes in indicators for various objects, normalizing functions, and data sources were obtained. The cyclical nature of indicators values over a significant period is noted. This reflects a typical situation when falling demand after reaching its maximum, and then may result in an improvement in the design, technology of use, and operational characteristics of the object. Experiments have shown that evaluating objects using calculated indicators coincide with expert estimates of the same objects. Using many sources of information about objects to collect source data allows you to get more adequate values. The proposed use of evidence theory makes it possible to combine different results more reasonably.
Иванов В.К.
Экспериментальная проверка модели оценки инновационности объекта Journal Article
In: Вестник Тверского государственного технического университета. Серия «Технические науки», vol. 8, no. 4, pp. 54-63, 2020.
Abstract | Links | BibTeX | Метки: additive criterion, data warehouse, innovation, innovation index, search query, utility function, аддитивный критерий, инновационность, поисковый запрос, функция полезности, хранилище данных
@article{V.K.Ivanov11,
title = {Экспериментальная проверка модели оценки инновационности объекта},
author = {Иванов В.К.},
url = {https://disk.yandex.ru/i/dLU-ISv_EMMz8w},
year = {2020},
date = {2020-11-30},
urldate = {2020-11-30},
journal = {Вестник Тверского государственного технического университета. Серия «Технические науки»},
volume = {8},
number = {4},
pages = {54-63},
publisher = {ТвГТУ},
abstract = {В статье рассматривается подход к количественной оценке инновационности продуктов и технологий. Результаты такой оценки могут быть использованы при создании хранилища данных для описаний объектов со значительным инновационным потенциалом. Модель расчета индекса инноваций основана на понятиях новизны, актуальности и имплементируемости объекта. Даны формальные определения этих показателей и описана методика их расчета. Используются нечеткие методы для обработки (неполной) информации из многочисленных источников и для получения вероятностных оценок инноваций. Представлены экспериментальные данные проверки модели, в том числе расчеты локальных критериев и глобального аддитивного оценочного критерия. Установлены цикличность динамических изменений показателей, их взаимозависимость, некоторые общие особенности продвижения продуктов. Полученные экспериментальные данные согласуются с экспертными оценками исследуемых продуктов. Анализ локальных критериев, использованных в исследовании, дает основание утверждать о правильном использовании аддитивной n-мерной функции полезности. Адекватность предположений и формальных выражений, которые используются в вычислительных алгоритмах отбора информации для размещения в хранилище данных, подтверждается.
Experimental check of model of object innovation evaluation
The article discusses the approach for evaluating the innovation index of the products and technologies. The evaluation results can be used to create a warehouse of the object descriptions with significant innovation potential. The model of innovation index computation is based on the concepts of novelty, relevance, and implementability of the object. Formal definitions of these indicators are given and a methodology for their calculation are described. The fuzzy methods to coprocess (incomplete) data from numerous sources and to obtain probabilistic innovation assessments are used. The experimental data of the model check including the calculations of local criteria and global additive evaluation criterion are presented. The cyclical nature of dynamic changes in indicators, their interdependence was established, some general features of the products promotion were found. The obtained experimental data are consistent with expert estimates of the products under study. The analysis of the local criteria used in the research gives grounds to assert the correct use of the additive ndimensional utility function. The adequacy of assumptions and formal expressions that are used in computational algorithms for selection information for data warehouse is confirmed. },
keywords = {additive criterion, data warehouse, innovation, innovation index, search query, utility function, аддитивный критерий, инновационность, поисковый запрос, функция полезности, хранилище данных},
pubstate = {published},
tppubtype = {article}
}
Experimental check of model of object innovation evaluation
The article discusses the approach for evaluating the innovation index of the products and technologies. The evaluation results can be used to create a warehouse of the object descriptions with significant innovation potential. The model of innovation index computation is based on the concepts of novelty, relevance, and implementability of the object. Formal definitions of these indicators are given and a methodology for their calculation are described. The fuzzy methods to coprocess (incomplete) data from numerous sources and to obtain probabilistic innovation assessments are used. The experimental data of the model check including the calculations of local criteria and global additive evaluation criterion are presented. The cyclical nature of dynamic changes in indicators, their interdependence was established, some general features of the products promotion were found. The obtained experimental data are consistent with expert estimates of the products under study. The analysis of the local criteria used in the research gives grounds to assert the correct use of the additive ndimensional utility function. The adequacy of assumptions and formal expressions that are used in computational algorithms for selection information for data warehouse is confirmed.
Ivanov V.K., Palyukh B.V., Sotnikov A.N.
Additive Criteria to Evaluate Relevance of Innovative Objects in Data Warehouse Journal Article
In: Lobachevskii Journal of Mathematics, vol. 41, no. 12, pp. 2535–2541, 2020, ISSN: 1995-0802.
Abstract | Links | BibTeX | Altmetric | Метки: additive criterion, additive independence, data warehouse, genetic algorithm, innovation, innovation index, partial criterion, search query, utility function
@article{V.K.Ivanov12,
title = {Additive Criteria to Evaluate Relevance of Innovative Objects in Data Warehouse},
author = {Ivanov V.K. and Palyukh B.V. and Sotnikov A.N.},
url = {https://disk.yandex.ru/i/atOSEIgY7P6F_Q},
doi = {10.1134/S199508022012015X },
issn = {1995-0802},
year = {2020},
date = {2020-11-30},
urldate = {2020-11-30},
journal = {Lobachevskii Journal of Mathematics},
volume = {41},
number = {12},
pages = {2535–2541},
abstract = {The article discusses some aspects of warehousing object descriptions having significant innovation potential. The procedure for selecting such descriptions consists of two consecutive phases. The first phase involves generating effective search queries with a special genetic algorithm (GAP). In the second phase, the model developed determines the index of innovativeness of an object archetype. Meanwhile the values of additive selection criteria are calculated. In the former case, the criterion is a fitness function of GAP. In the latter case, the criterion is the index of innovativeness. The purpose of the article is to justify the additive criterion applicability for calculating the value of the GAP fitness function. The article describes general conditions of applying additive evaluation criteria and shows how these conditions are met for the GAP fitness function. The analysis of the partial criteria gives grounds to assert their additive independence and, therefore, the correct use of additive n-dimensional utility function. Some additional reasons for applying additive criterion are also given. In general, the article proposes a unified approach to generating global assessment criteria and the relevance of unified formal structure is shown. The models presented in the article are used to develop adequate computational algorithms for the developed data warehouse support system. },
keywords = {additive criterion, additive independence, data warehouse, genetic algorithm, innovation, innovation index, partial criterion, search query, utility function},
pubstate = {published},
tppubtype = {article}
}
Иванов В.К., Образцов И.В.
2020.
Abstract | Links | BibTeX | Метки: innovation index, нечёткая логика, показатель инновационности, теория свидетельств, экспертная система
@patent{V.K.Ivanov18,
title = {Свидетельство о государственной регистрации программы для ЭВМ №2020663081 «Программа для решения задачи групповой обработки результатов измерений и интервальных оценок нечётких и неполных значений показателей инновационности объектов в соответствии с теорией свидетельств»},
author = {Иванов В.К. and Образцов И.В.},
url = {https://disk.yandex.ru/i/LH9PP9cMURhMzQ},
year = {2020},
date = {2020-10-22},
urldate = {2020-08-09},
abstract = {Программа предназначена для групповой обработки результатов измерений и оценок значений показателей инновационности объектов – продуктов или технологий. Используются интервальные оценки в соответствии с теорией свидетельств Демпстера-Шафера и осуществляется агрегация больших объёмов нечётких и неполных данных различной структуры. Реализован алгоритм для расчета вероятностных значений показателей инновационности объектов на основе исходных данных, полученных из нескольких источников с учетом их надежности, включая вычисление функций доверия и правдоподобия. Исходные данные программы могут иметь различную природу и быть получены опросом экспертов, из поисковой системы или измерительного устройства. Программа может использоваться при анализе сложных многокомпонентных систем.
Язык: SpiderBasic
ОС: Microsoft Windows
Объём программы: 7966 Kб },
keywords = {innovation index, нечёткая логика, показатель инновационности, теория свидетельств, экспертная система},
pubstate = {published},
tppubtype = {patent}
}
Язык: SpiderBasic
ОС: Microsoft Windows
Объём программы: 7966 Kб
Иванов В.К., Мескин П.И.
2020.
Abstract | Links | BibTeX | Метки: innovation index, востребованность, имплементируемость, индекс, инновационность, новизна
@patent{V.K.Ivanov19,
title = {Свидетельство о государственной регистрации программы для ЭВМ №2020663082 «Программа для решения задачи вычисления индекса инновационности объекта с учетом его новизны, востребованности и имплементируемости»},
author = {Иванов В.К. and Мескин П.И. },
url = {https://disk.yandex.ru/i/MNJW9Bz797fm5g},
year = {2020},
date = {2020-10-22},
urldate = {2022-08-09},
abstract = {Программа предназначена для вычисления индекса инновационности объекта, который является аддитивным оценочным критерием, задаваемым взвешенной суммой нормируемых значений индикаторов новизны, востребованности и имплементируемости объекта. Значения индикаторов вычисляются с использованием информации об объекте и частоте ее использования из доступных гетерогенных хранилищ данных. Вычисления производятся на основе лингвистической модели объекта - множества архетипов, определяющих структуру, условия применения и результаты функционирования объекта. Программа обеспечивает создание и хранение лингвистической модели, генерацию и выполнение поисковых запросов, подготовку исходных данных и вычисление индекса инновационности, сохранение и обновление результатов вычислений.
Язык: Python, C#
ОС: Microsoft Windows
Объём программы: 200 Kб },
keywords = {innovation index, востребованность, имплементируемость, индекс, инновационность, новизна},
pubstate = {published},
tppubtype = {patent}
}
Язык: Python, C#
ОС: Microsoft Windows
Объём программы: 200 Kб
Ivanov V.K., Palyukh B.V., Sotnikov A.N.
Features of Data Warehouse Support Based on a Search Agent and an Evolutionary Model for Innovation Information Selection Статья в сборнике
In: Advances in Intelligent Systems and Computing. Proceedings of the Fourth International Scientific Conference “Intelligent Information Technologies for Industry” (IITI’19) , pp. 120-130, Springer, Cham, 2020, ISBN: 978-30-3050-096-2.
Abstract | Links | BibTeX | Altmetric | Метки: data warehouse, genetic algorithm, innovation index, Innovativeness, Intelligent agent, novelty, relevance, subject search
@inproceedings{V.K.2020,
title = {Features of Data Warehouse Support Based on a Search Agent and an Evolutionary Model for Innovation Information Selection},
author = {Ivanov V.K. and Palyukh B.V. and Sotnikov A.N.},
url = {https://disk.yandex.ru/i/FT7JLsQmXPIMgQ
https://doi.org/10.1007/978-3-030-50097-9_13},
doi = {10.1007/978-3-030-50097-9_13},
isbn = {978-30-3050-096-2},
year = {2020},
date = {2020-00-01},
urldate = {2020-00-01},
booktitle = {Advances in Intelligent Systems and Computing. Proceedings of the Fourth International Scientific Conference “Intelligent Information Technologies for Industry” (IITI’19) },
volume = {1156},
pages = {120-130},
publisher = {Springer, Cham},
abstract = {Innovations are the key factor of the competitiveness of any modern business. This paper gives the systematized results of investigations on the data warehouse technology with an automatic data-replenishment from heterogeneous sources. The data warehouse is suggested to contain information about objects having a significant innovative potential. The selection mechanism for such information is based on quantitative evaluation of the objects innovativeness, in particular their technological novelty and relevance for them. The article presents the general architecture of the data warehouse, describes innovativeness indicators, considers Theory of Evidence application for processing incomplete and fuzzy information, defines basic ideas of measurement processing procedure to compute probabilistic values of innovativeness components, summarizes using evolutional approach in forming the linguistic model of object archetype, gives information about an experimental check if the model developed is adequate. The results of these investigations can be used for business planning, forecasting technological development, investment project expertise.
Ivanov, V.K., Palyukh, B.V., Sotnikov, A.N. (2020). Features of Data Warehouse Support Based on a Search Agent and an Evolutionary Model for Innovation Information Selection. In: Kovalev, S., Tarassov, V., Snasel, V., Sukhanov, A. (eds) Proceedings of the Fourth International Scientific Conference “Intelligent Information Technologies for Industry” (IITI’19). IITI 2019. Advances in Intelligent Systems and Computing, vol 1156. Springer, Cham. https://doi.org/10.1007/978-3-030-50097-9_13 (Scopus)},
keywords = {data warehouse, genetic algorithm, innovation index, Innovativeness, Intelligent agent, novelty, relevance, subject search},
pubstate = {published},
tppubtype = {inproceedings}
}
Ivanov, V.K., Palyukh, B.V., Sotnikov, A.N. (2020). Features of Data Warehouse Support Based on a Search Agent and an Evolutionary Model for Innovation Information Selection. In: Kovalev, S., Tarassov, V., Snasel, V., Sukhanov, A. (eds) Proceedings of the Fourth International Scientific Conference “Intelligent Information Technologies for Industry” (IITI’19). IITI 2019. Advances in Intelligent Systems and Computing, vol 1156. Springer, Cham. https://doi.org/10.1007/978-3-030-50097-9_13 (Scopus)
Иванов В.К., Думина Д.С., Семенов Н.А.
Определение весовых коэффициентов для аддитивной фитнес-функции генетического алгоритма Journal Article
In: Программные продукты и системы (Software & Systems), vol. 33, no. 1, pp. 47-53, 2020, ISSN: 0236-235X.
Abstract | Links | BibTeX | Altmetric | Метки: innovation index, аддитивный критерий, весовой коэффициент, генетический алгоритм, поисковый запрос, релевантность, фитнес-функция, хранилище данных
@article{V.K.Ivanov10,
title = {Определение весовых коэффициентов для аддитивной фитнес-функции генетического алгоритма},
author = {Иванов В.К. and Думина Д.С. and Семенов Н.А.},
url = {https://disk.yandex.ru/i/-5Uw771oZAt7cA},
doi = {10.15827/0236-235X.129.047-053},
issn = {0236-235X},
year = {2020},
date = {2020-00-01},
urldate = {2020-00-01},
journal = {Программные продукты и системы (Software & Systems)},
volume = {33},
number = {1},
pages = {47-53},
publisher = {Программные продукты и системы (Software & Systems)},
abstract = {Представлено возможное решение задачи выбора способа аналитического определения весовых коэффициентов для аддитивной фитнес-функции генетического алгоритма. Этот алгоритм является основой эволюционного процесса, формирующего в поисковой системе устойчивую и эффективную популяцию запросов для получения высокорелевантных результатов. Приведено формальное описание фитнес-функции алгоритма, которая представляет собой взвешенную сумму трех неоднородных критериев.
Подробно описаны выбранные способы аналитического определения весовых коэффициентов, при этом отмечается невозможность использования методов экспертных оценок. Рассмотрена методика проведения исследований. Описывается исходный набор данных, в том числе диапазоны данных, принятые для вычисления весовых коэффициентов различными способами. Порядок вычислений проиллюстрирован примерами. Результаты исследований, показанные в графической форме, наглядно демонстрируют поведение фитнес-функции при работе генетического алгоритма с использованием различных вариантов весовых коэффициентов.
Анализ результатов позволяет сделать вывод о предпочтительности расчета весовых коэффициентов фитнес-функции данной популяции запросов, выполненного с использованием результатов всех запросов этой популяции. Вывод базируется на наличии последовательных улучшений популяций запросов, характерных для корректной работы генетических алгоритмов, а также на очевидном обнаружении в ходе экспериментов локальных и глобального максимумов фитнес-функции. При использовании других способов расчета весовых коэффициентов подобного не наблюдается. Способ определения весовых коэффициентов для аддитивного критерия оптимальности может повысить качество работы генетического алгоритма для формирования эффективных поисковых запросов. В частности, повышается вероятность быстрого обнаружения локальных экстремумов фитнес-функции, которые на заданной области ее определения могут стать оптимальным решением. },
keywords = {innovation index, аддитивный критерий, весовой коэффициент, генетический алгоритм, поисковый запрос, релевантность, фитнес-функция, хранилище данных},
pubstate = {published},
tppubtype = {article}
}
Подробно описаны выбранные способы аналитического определения весовых коэффициентов, при этом отмечается невозможность использования методов экспертных оценок. Рассмотрена методика проведения исследований. Описывается исходный набор данных, в том числе диапазоны данных, принятые для вычисления весовых коэффициентов различными способами. Порядок вычислений проиллюстрирован примерами. Результаты исследований, показанные в графической форме, наглядно демонстрируют поведение фитнес-функции при работе генетического алгоритма с использованием различных вариантов весовых коэффициентов.
Анализ результатов позволяет сделать вывод о предпочтительности расчета весовых коэффициентов фитнес-функции данной популяции запросов, выполненного с использованием результатов всех запросов этой популяции. Вывод базируется на наличии последовательных улучшений популяций запросов, характерных для корректной работы генетических алгоритмов, а также на очевидном обнаружении в ходе экспериментов локальных и глобального максимумов фитнес-функции. При использовании других способов расчета весовых коэффициентов подобного не наблюдается. Способ определения весовых коэффициентов для аддитивного критерия оптимальности может повысить качество работы генетического алгоритма для формирования эффективных поисковых запросов. В частности, повышается вероятность быстрого обнаружения локальных экстремумов фитнес-функции, которые на заданной области ее определения могут стать оптимальным решением.
Иванов В.К.
Некоторые результаты экспериментальной проверки модели количественной оценки инновационности объекта Journal Article
In: Информация и инновации, vol. 15, no. 3, pp. 27–36, 2020.
Abstract | Links | BibTeX | Altmetric | Метки: additive criterion, data warehouse, innovation, innovation index, search query, utility function, аддитивный критерий, инновационность, поисковый запрос, функция полезности, хранилище данных
@article{V.K.Ivanov14,
title = {Некоторые результаты экспериментальной проверки модели количественной оценки инновационности объекта},
author = {Иванов В.К. },
url = {https://disk.yandex.ru/i/49fIoBECHvb0DA},
doi = {10.31432/1994-2443-2020-15-3-27-36},
year = {2020},
date = {2020-00-01},
urldate = {2020-00-01},
journal = {Информация и инновации},
volume = {15},
number = {3},
pages = {27–36},
abstract = {В статье представлены результаты экспериментов, которые были проведены для подтверждения основных идей предлагаемого подхода к определению инновационности объектов. Этот подход основан на предположении об адекватности отображения жизненного цикла продуктов, описания которых размещены в различных хранилищах данных. Предложенная формальная модель позволяет вычислить количественное значение аддитивного оценочного критерия инновационности объектов. Полученные данные экспериментов дают возможность оценить корректность принятого подхода.
Some Results of Experimental Check of The Model of the Object Innovativeness Quantitative Evaluation
The paper presents the results of the experiments that were conducted to confirm the main ideas of the proposed approach to determining the objects innovativeness. This approach assumed that the product life cycle of whose descriptions are placed in different data warehouses is adequate. The proposed formal model allows us to calculate the quantitative value of the additive evaluation criterion of objects innovativeness. The obtained experimental data make it possible to evaluate the adopted approach correctness.},
keywords = {additive criterion, data warehouse, innovation, innovation index, search query, utility function, аддитивный критерий, инновационность, поисковый запрос, функция полезности, хранилище данных},
pubstate = {published},
tppubtype = {article}
}
Some Results of Experimental Check of The Model of the Object Innovativeness Quantitative Evaluation
The paper presents the results of the experiments that were conducted to confirm the main ideas of the proposed approach to determining the objects innovativeness. This approach assumed that the product life cycle of whose descriptions are placed in different data warehouses is adequate. The proposed formal model allows us to calculate the quantitative value of the additive evaluation criterion of objects innovativeness. The obtained experimental data make it possible to evaluate the adopted approach correctness.
Иванов В.К., Палюх Б.В.
Реализация экспертной системы для оценки инновационности технических решений Journal Article
In: Программные продукты и системы (Software & Systems), vol. 32, no. 4, pp. 696–707, 2019.
Abstract | Links | BibTeX | Altmetric | Метки: certificate, data warehouse, evaluation, expert system, implementability, innovation, innovation index, invention, relevance, term, востребованность, изобретение, имплементируемость, инновационность, оценка, свидетельство, терм, хранилище данных, экспертная система
@article{nokey,
title = {Реализация экспертной системы для оценки инновационности технических решений},
author = {Иванов В.К. and Палюх Б.В.},
url = {https://disk.yandex.ru/i/Q7XagjMkCUl6ew
http://www.swsys.ru/index.php?page=article&id=4658&ysclid=l6y3q7vn1k593006109},
doi = {10.15827/0236-235X.128.696-707},
year = {2019},
date = {2019-12-31},
urldate = {2022-08-17},
journal = {Программные продукты и системы (Software & Systems)},
volume = {32},
number = {4},
pages = {696–707},
publisher = {ЦПС},
abstract = {Представлено возможное решение задачи алгоритмизации количественной оценки показателей инновационности технических изделий, изобретений, технологий. Введены понятия технологической новизны, востребованности и имплементируемости – составных частей критерия инновационности продукта. Предложены модель и алгоритм вычисления каждого из указанных показателей инновационности в условиях неполноты и неточности, а иногда и противоречивости исходной информации. В статье описывается разработанное специализированное ПО, которое является перспективным методологическим инструментом для использования интервальных оценок в соответствии с теорией свидетельств. Эти оценки применяются при анализе сложных многокомпонентных систем, агрегации больших объемов нечетких и неполных данных различной структуры. Представлены состав и структура мультиагентной экспертной системы, назначение которой – групповая обработка результатов измерений и оценок значений показателей инновационности объектов. Определяются активные элементы системы, их функциональность, роли, порядок взаимодействия, входные и выходные интерфейсы, общий алгоритм функционирования ПО. Описывается реализация программных модулей, приводится пример решения конкретной задачи по определению уровня инновационности технических изделий. Разработанные подход, модели, методика и ПО могут быть использованы в реализации технологии хранилища характеристик объектов, обладающих значительным инновационным потенциалом. Формализация исходных данных задачи существенно повышает адаптивность предложенных методов к различным предметным областям. Появляется возможность обработки данных различной природы, полученных в результате опроса экспертов, из поисковой системы или даже с измерительного устройства, что способствует повышению практической значимости представленной разработки.
Implementing an expert system to evaluate technical solutions innovativeness
V.K. Ivanov 1, I.V. Obraztsov, B.V. Palyukh
The paper presents a possible solution to the problem of algorithmization for quantifying innovativeness indicators of technical products, inventions and technologies. The concepts of technological novelty, relevance and implementability as components of product innovation criterion are introduced. Authors propose a model and algorithm to calculate every of these indicators of innovativeness under conditions of incompleteness and inaccuracy, and sometimes inconsistency of the initial information. The paper describes the developed specialized software that is a promising methodological tool for using interval estimations in accordance with the theory of evidence. These estimations are used in the analysis of complex multicomponent systems, aggregations of large volumes of fuzzy and incomplete data of various structures. Composition and structure of a multi-agent expert system are presented. The purpose of such system is to process groups of measurement results and to estimate indicators values of objects innovativeness. The paper defines active elements of the system, their functionality, roles, interaction order, input and output interfaces, as well as the general software functioning algorithm. It describes implementation of software modules and gives an example of solving a specific problem to determine the level of technical products innovation. The developed approach, models, methodology and software can be used to implement the storage technology to store the characteristics of objects with significant innovative potential. Formalization of the task's initial data significantly increases the possibility to adapt the proposed methods to various subject areas. There appears an opportunity to process data of various natures, obtained during experts’ surveys, from a search system or even a measuring device, which helps to increase the practical significance of the presented research.},
keywords = {certificate, data warehouse, evaluation, expert system, implementability, innovation, innovation index, invention, relevance, term, востребованность, изобретение, имплементируемость, инновационность, оценка, свидетельство, терм, хранилище данных, экспертная система},
pubstate = {published},
tppubtype = {article}
}
Implementing an expert system to evaluate technical solutions innovativeness
V.K. Ivanov 1, I.V. Obraztsov, B.V. Palyukh
The paper presents a possible solution to the problem of algorithmization for quantifying innovativeness indicators of technical products, inventions and technologies. The concepts of technological novelty, relevance and implementability as components of product innovation criterion are introduced. Authors propose a model and algorithm to calculate every of these indicators of innovativeness under conditions of incompleteness and inaccuracy, and sometimes inconsistency of the initial information. The paper describes the developed specialized software that is a promising methodological tool for using interval estimations in accordance with the theory of evidence. These estimations are used in the analysis of complex multicomponent systems, aggregations of large volumes of fuzzy and incomplete data of various structures. Composition and structure of a multi-agent expert system are presented. The purpose of such system is to process groups of measurement results and to estimate indicators values of objects innovativeness. The paper defines active elements of the system, their functionality, roles, interaction order, input and output interfaces, as well as the general software functioning algorithm. It describes implementation of software modules and gives an example of solving a specific problem to determine the level of technical products innovation. The developed approach, models, methodology and software can be used to implement the storage technology to store the characteristics of objects with significant innovative potential. Formalization of the task's initial data significantly increases the possibility to adapt the proposed methods to various subject areas. There appears an opportunity to process data of various natures, obtained during experts’ surveys, from a search system or even a measuring device, which helps to increase the practical significance of the presented research.